Skip to main content
Log in

Effect of Annealing and Aging Treatment on Pitting Corrosion Resistance of Fine-Grained Mg-8%Al-0.5%Zn Alloy

  • Microstructure Evolution During Deformation Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In order to study the influence of plastic deformation, annealing and aging treatment on pitting corrosion, the AZ80Mg alloy was subjected to equal-channel angular pressing (ECAP) by route R at 325°C for up to 4 ECAP passes (P) and annealing conditions of 523 K, 623 K and 723 K followed by aging treatment at 6 h and 12 h. A microhardness and corrosion study was accomplished and microstructural evolution was recorded using optical microscopy (OM), scanning electron microscopy and electron backscatter diffraction (EBSD). OM and EBSD analysis showed that a fine-grain microstructure with average grain sizes of 32.87 µm and 6.35 µm was achieved after 2P and 4P of ECAP, respectively. During annealing and aging treatment, the fine-grain Mg alloy revealed that the maximum microhardness and improved corrosion resistance were observed mainly due to redistribution of β-secondary phases. Specifically, 12 h aged specimens at 523 K represented maximum microhardnesses of about 85 Hv and 87 Hv for ECAP-2P and -4P, respectively. Also, 12 h aging at 723 K appeared preferable for accomplishing enhanced corrosion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Avvari, S. Narendranath, and H. Shivananda Nayaka, Int. J. Mater. Prod. Technol. 51, 139 (2015).

    Article  Google Scholar 

  2. I.J. Polmear, Mater. Sci. Technol. 10, 1 (1994).

    Article  Google Scholar 

  3. G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, J. Met. Mater. Miner. 29, 2 (2019).

    Google Scholar 

  4. G.M. Naik, G.D. Gote, and S. Narendranath, Mater. Today Proc. 5, 17763 (2018).

    Article  Google Scholar 

  5. X. Zheng, D. Wenbo, K. Liu, Z. Wang, and S. Li, J. Magnes. Alloys 4, 135 (2016).

    Article  Google Scholar 

  6. G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, AIP Conf. Proc. 2082, 030016 (2019).

    Article  Google Scholar 

  7. A. Yamashita, Z. Horita, and T.G. Langdon, Mater. Sci. Eng. A 300, 142 (2001).

    Article  Google Scholar 

  8. M. Avvari and M. Able, Adv. Mech. Eng. 8, 168 (2016).

    Article  Google Scholar 

  9. P. Minárik, R. Král, and M. Janeček, Appl. Surf. Sci. 281, 44 (2013).

    Article  Google Scholar 

  10. G.M. Naik, G.D. Gote, S. Narendranath, and S.S. Satheesh Kumar, Mater. Res. Exp. 5, 086513 (2018).

    Article  Google Scholar 

  11. T. Tański, P. Snopiński, W. Pakieła, W. Borek, K. Prusik, and S. Rusz, Arch. Civ. Mech. Eng. 16, 325 (2016).

    Article  Google Scholar 

  12. C.S. Obayi, R. Tolouei, A. Mostavan, C. Paternoster, S. Turgeon, B.A. Okorie, and D. Mantovani, Biomatter 6, 959874 (2016).

    Article  Google Scholar 

  13. G.M. Naik, B.N. Anjan, S. Narendranath, S.S. Satheesh Kumar, and G.V. Preetham Kumar, Mater. Res. Exp. 6, 096538 (2019).

    Article  Google Scholar 

  14. L. Wang, E. Mostaed, X. Cao, G. Huang, A. Fabrizi, F. Bonollo, and M. Vedani, Mater. Des. 89, 1 (2016).

    Article  Google Scholar 

  15. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater Sci. 60, 130 (2014).

    Article  Google Scholar 

  16. M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, and L.G. Johansson, Prog. Mater Sci. 89, 92 (2017).

    Article  Google Scholar 

  17. P. Poddar, A. Kamaraj, A.P. Murugesan, S. Bagui, and K.L. Sahoo, J. Magnes. Alloys 5, 348 (2017).

    Article  Google Scholar 

  18. J. Qiao, F. Bian, M. He, and Y. Wang, Trans. Nonferrous Met. Soc. China 23, 2857 (2017).

    Article  Google Scholar 

  19. H. Ning, Y. Yandong, B. Gao, L. Xiao, L. Wen, Z. Yan, L. Li, and X. Chen, Materials 11, 757 (2018).

    Article  Google Scholar 

  20. X.-B. Liu, D.-Y. Shan, Y.-W. Song, and E.-H. Han, Trans. Nonferrous Met. Soc. China 20, 1345 (2010).

    Article  Google Scholar 

  21. H.R. Bakhsheshi-Rad, E. Hamzah, M. Medraj, M.H. Idris, A.F. Lotfabadi, M. Daroonparvar, and M.A.M. Yajid, Mater. Corros. 65, 999 (2014).

    Article  Google Scholar 

  22. R.L. Doiphode, S.N. Murty, N. Prabhu, and B.P. Kashyap, J. Magnes. Alloys 3, 322 (2015).

    Article  Google Scholar 

  23. T. Zhu, Z.W. Chen, and W. Gao, J. Mater. Eng. Perform. 19, 860 (2010).

    Article  Google Scholar 

  24. M. Avvari and S. Narendranath, Silicon 10, 39 (2018).

    Article  Google Scholar 

  25. J. Wei, G. Huang, D. Yin, K. Li, Q. Wang, and H. Zhou, Metals 7, 119 (2017).

    Article  Google Scholar 

  26. L. Zhou, Y. Liu, J. Zhang, and Z. Kang, Mater. Sci. Technol. 32, 969 (2016).

    Article  Google Scholar 

  27. M.B. Yang, X.F. Liang, L.I. Hui, and F.S. Pan, Trans. Nonferrous Met. Soc. China 20, s416 (2010).

    Article  Google Scholar 

  28. C. Zhang, J. Liu, and B. Chen, Appl. Phys. A 125, 2 (2019).

    Google Scholar 

  29. C. Zhang, J. Liu, and B. Chen, Ceram. Int. 44, 16 (2018).

    Google Scholar 

  30. Y. Shi, B. Yang, and P. Liaw, Metals 7, 43 (2017).

    Article  Google Scholar 

  31. H. Liao, X. Zhou, H. Li, D.E.N.G. Min, X. Liang, and R. Liu, Trans. Nonferrous Met. Soc. China 25, 12 (2015).

    Article  Google Scholar 

  32. L. Xin, J. Jiang, Y. Zhao, D. Wen, and Y. Zhu, Trans. Nonferrous Met. Soc. China 25, 3909 (2015).

    Article  Google Scholar 

  33. K.R. Gopi, N.H. Shivananda, and S. Sahu, Arab. J. Sci. Eng. 43, 4871 (2018).

    Article  Google Scholar 

  34. G.M. Naik, S. Narendranath, and S.S. Satheesh Kumar, J. Mater. Eng. Perform. 28, 5 (2019).

    Article  Google Scholar 

  35. G.M. Naik, G.D. Gote, S. Narendranath, and S.S. Satheesh Kumar, Adv. Mater. Res. 7, 2 (2018).

    Google Scholar 

  36. O. Lunder, J.E. Lein, T.K. Aune, and K. Nisancioglu, Corrosion 45, 741 (1989).

    Article  Google Scholar 

  37. H. Jia, X. Feng, and Y. Yang, J. Magnes. Alloys 3, 247 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by DRDO-NRB, Government of India, under Grant Number NRB/4003/PG/366.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gajanan M. Naik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, G.M., Narendranath, S., Satheesh Kumar, S.S. et al. Effect of Annealing and Aging Treatment on Pitting Corrosion Resistance of Fine-Grained Mg-8%Al-0.5%Zn Alloy. JOM 71, 4758–4768 (2019). https://doi.org/10.1007/s11837-019-03769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03769-1

Navigation