Skip to main content
Log in

Phase fraction evolution in hot working of a two-phase titanium alloy: experiment and modeling

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the present work, the coupled effects of initial structure and processing parameters on microstructure of a two-phase titanium alloy were investigated to predict the microstructural evolution in multiple hot working. It is found that microstructure with different constituent phases can be obtained by regulating the initial structure and hot working conditions. The variation of deformation degree and cooling rate can change the morphology of the constituent phases, but do not alter the phase fraction. The phase transformation during heating and holding determines the phase fraction for a certain initial structure. β–α–β transformation occurs during heating and holding. β to α transformation leads to a significant increase in content and size of lamellar α. The α to β transformation occurs simultaneously in equiaxed α and lamellar α. The thickness of lamellar α increases with temperature, which is caused by the vanishing of fine α lamellae due to phase transformation and coarsening by termination migration. By assuming a quasi-equilibrium phase transformation in heating and holding, a modeling approach is proposed for predicting microstructural evolution. The three stages of phase transformation are modeled separately and combined to predict the variation of phase fraction with temperature. Model predictions agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lütjering G, Williams JC. Titanium. 2nd ed. Berlin: Springer; 2007. 1.

    Google Scholar 

  2. Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.

    Article  Google Scholar 

  3. Guo LG, Zhu S, Yang H, Fan XG, Chen FL. Quantitative analysis of microstructure evolution induced by temperature rise during(α + β) deformation of TA15 titanium alloy. Rare Met. 2016;35(3):223.

    Article  Google Scholar 

  4. Fan XG, Yang H, Gao PF, Zuo R, Lei PH. The role of dynamic and post dynamic recrystallization on microstructure refinement in primary working of a coarse grained two-phase titanium alloy. J Mater Process Technol. 2016;234:290.

    Article  Google Scholar 

  5. Bieler TR, Semiatin SL. The origins of heterogeneous deformation during primary hot working of Ti-6Al-4V. Int J Plast. 2002;18(9):1165.

    Article  Google Scholar 

  6. Gao J, Li MQ, Li XD, Zhang D, Xue JR, Jiang XQ, Zhang CY, Liu LY. Quantitative analysis on microstructure evolution of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy during isothermal compression. Rare Met. 2015;34(9):625.

    Article  Google Scholar 

  7. Meng M, Yang H, Fan XG, Yan SL, Zhao AM, Zhu S. On the modeling of diffusion-controlled growth of primary α in heat treatment of two-phase Ti-alloys. J Alloy Compd. 2017;691:67.

    Article  Google Scholar 

  8. Jia BH, Song WD, Tang HP, Wang ZH, Mao XN, Ning JG. Hot deformation behavior and constitutive model of TC18 alloy during compression. Rare Met. 2014;33(4):383.

    Article  Google Scholar 

  9. Zhu YC, Zeng WD, Feng F, Sun Y, Han YF, Zhou YG. Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map. Mater Sci Eng A. 2013;528(3):1757.

    Article  Google Scholar 

  10. Gao PF, Fan XG, Yang H. Role of processing parameters in the development of tri-modal microstructure during isothermal local loading forming of TA15 titanium alloy. J Mater Process Technol. 2017;239:160.

    Article  Google Scholar 

  11. Wang MP, Zhao YQ, Zeng WD. Phase transformation kinetics of Ti-1300 alloy during continuous heating. Rare Met. 2015;34(4):233.

    Article  Google Scholar 

  12. He D, Zhua JC, Zaefferer S, Raabe D, Liu Y, Lai ZL, Yang XW. Influences of deformation strain, strain rate and cooling rate on the Burgers orientation relationship and variants morphology during β → α phase transformation in a near α titanium alloy. Mater Sci Eng A. 2012;549:20.

    Article  Google Scholar 

  13. Sha W, Guo ZL. Phase evolution of Ti-6Al-4V during continuous heating. J Alloy Compd. 1999;290(1):L3.

    Article  Google Scholar 

  14. Wang YH, Kou HC, Chang H, Zhu ZZ, Su XF, Li JS, Zhou L. Phase transformation in TC21 alloy during continuous heating. J Alloy Compd. 2009;472(1–2):252.

    Article  Google Scholar 

  15. Zhu S, Yang H, Guo LG, Fan XG. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy. Mater Charact. 2012;70:101.

    Article  Google Scholar 

  16. Semiatin SL, Kirby BC, Salishchev GA. Coarsening behavior of an α–β titanium alloy. Metall Mater Trans A. 2004;35(9):2809.

    Article  Google Scholar 

  17. Semiatin SL, Corbett MW, Fagin PN, Salishchev GA, Lee CS. Dynamic-coarsening behavior of an α/β titanium alloy. Metall Mater Trans A. 2006;37(4):1125.

    Article  Google Scholar 

  18. Zong YY, Shan DB, Xu M, Lv Y. Flow softening and microstructural evolution of TC11 titanium alloy during hot deformation. J Mater Process Technol. 2009;209(4):1988.

    Article  Google Scholar 

  19. Ma X, Zeng WD, Tian F, Zhou YG. The kinetics of dynamic globularization during hot working of a two phase titanium alloy with starting lamellar microstructure. Mater Sci Eng A. 2012;548:6.

    Article  Google Scholar 

  20. Wang K, Li MQ. Effects of heat treatment and hot deformation on the secondary α phase evolution of TC8 titanium alloy. Mater Sci Eng A. 2014;613:209.

    Article  Google Scholar 

  21. Semiatin SL, Lehner TM, Miller JD, Doherty RD, Furrer DU. Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure. Metall Mater Trans A. 2007;38(4):910.

    Article  Google Scholar 

  22. Carslaw HS, Jaeger JC. Conduction of Heat in Solids. London: Oxford University Press; 1959. 28.

    Google Scholar 

  23. Aaron HB, Fainstein D, Kotler GR. Diffusion-limited phase transformations: a comparison and critical evaluation of the mathematical approximations. J Appl Phys. 1970;41(11):4404.

    Article  Google Scholar 

  24. Sha W, Malinov S. Titanium Alloys: Modeling of Microstructure, Properties and Applications. Cambridge: Woodhead; 2009. 117.

    Book  Google Scholar 

  25. Gao XX, Zeng WD, Zhang SF, Wang QJ. A study of epitaxial growth behaviors of equiaxed α phase at different cooling rates in near alpha titanium alloy. Acta Mater. 2017;122:298.

    Article  Google Scholar 

  26. Fan XG, Yang H, Gao PF. Prediction of constitutive behavior and microstructure evolution in hot deformation of TA15 titanium alloy. Mater Des. 2013;51:34.

    Article  Google Scholar 

  27. Elmer JW, Palmer TA, Babu SS, Specht ED. In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V. Mater Sci Eng A. 2005;391(1–2):104.

    Article  Google Scholar 

  28. Barriobero-Vila P, Requena G, Buslaps T, Alfeld M, Boesenberg U. Role of element partitioning on the α–β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating. J Alloy Compd. 2015;626:330.

    Article  Google Scholar 

  29. Bein S, Bechet J. Comparative approach of phase transformations in titanium alloys Ti-6246, β-Cez and Ti-1023 using dilatometric analysis and electrical resistivity measurements. In: Titanium 95—Science and Technology. Proceedings of the 8th World Conference on Titanium. London: Institute of Materials. 1996. 2353.

  30. Sun ZC, Guo SS, Yang H. Nucleation and growth mechanism of α-lamellae of Ti alloy TA15 cooling from an α + β phase field. Acta Mater. 2013;61(6):2057.

    Article  Google Scholar 

  31. Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog Mater Sci. 2002;47(2):163.

    Article  Google Scholar 

  32. Pande CS, Rajagopal AK. Uniqueness and self similarity of size distributions in grain growth and coarsening. Acta Mater. 2001;49(10):1805.

    Article  Google Scholar 

  33. Mei MJ, Yang H, Fan XG. Quantitative analysis of the microstructure under multi-pass thermal cycle of TA15 titanium alloy. J Plast Eng. 2014;21(4):79.

    Google Scholar 

  34. Fan XG, Gao PF, Yang H. Microstructure evolution of the transitional region in isothermal local loading of TA15 titanium alloy. Mater Sci Eng A. 2011;528(6):2694.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51575449), the 111 Project (B08040) and the Research Fund of the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, China (No. 104-QP-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Guang Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XG., Zheng, HJ., Gao, PF. et al. Phase fraction evolution in hot working of a two-phase titanium alloy: experiment and modeling. Rare Met. 36, 769–779 (2017). https://doi.org/10.1007/s12598-017-0950-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0950-5

Keywords

Navigation