Skip to main content
Log in

Pyrite oxidation in column at controlled redox potential of 900 mV with and without bacteria

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Comparisons on the bioleaching and sterile oxidation of pyrite were performed at controlled redox potential of 900 mV (vs. SHE) and different temperatures of 30 and 60 °C. For sterile experiments, the redox potential of irrigation solution was controlled by adding hydrogen peroxide solution (15 wt%), while the redox potential of irrigation solution for bioleaching was elevated by flowing through the packed bed in which bacteria were activated and colonized. The rate of pyrite bioleaching is faster than that of sterile oxidation at temperature of 30 °C. The reason is that the potential gradient of leaching solution in bioleaching column is much smaller than that in sterile column. The redox potentials of irrigation solution and leaching solution are similar for bioleaching; however, the redox potential difference of irrigation solution and leaching solution for sterile oxidation is about 150 mV. When temperature increases to 60 °C for sterile oxidation, the rate of pyrite leaching is faster than that of bioleaching at temperature of 30 °C, even though the redox potential gradient of leaching solution is great. The mineralogy analyses of pyrite residue were performed by scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The results confirm that pyrite oxidation might only occur at specific sites with high surface energy on surface and obeys the “indirect mechanism” whether there are bacteria or not. The pyrite oxidation rate is not inhibited by inert sulfur on residue surface at elevated redox potential. According to the conclusions, the way to accelerate pyrite oxidation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dimitrijevic M, Antonijevic MM, Jankovic Z. Kinetics of pyrite dissolution by hydrogen peroxide in perchloric acid. Hydrometallurgy. 1996;42(3):377.

    Article  CAS  Google Scholar 

  2. Ruan RM, Zhou E, Liu XY, Wu B, Zhou GY, Wen JK. Comparison on the leaching kinetics of chalcocite and pyrite with or without bacteria. Rare Met. 2010;29(6):552.

    Article  CAS  Google Scholar 

  3. Valente TM, Leal Gomes C. Occurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ. 2009;407(3):1135.

    Article  CAS  Google Scholar 

  4. Iglesias N, Carranza F. Treatment of a gold bearing arsenopyrite concentrate by ferric sulphate leaching. Miner Eng. 1996;9(3):317.

    Article  CAS  Google Scholar 

  5. Deng TY, Liao MX. Gold recovery enhancement from a refractory flotation concentrate by sequential bioleaching and thiourea leach. Hydrometallurgy. 2002;63(3):249.

    Article  CAS  Google Scholar 

  6. McKibben MA, Barnes HL. Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim Cosmochim Acta. 1986;50(7):1509.

    Article  CAS  Google Scholar 

  7. Moses CO, Kirk Nordstrom D, Herman JS, Mills AL. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta. 1987;51(6):1561.

    Article  CAS  Google Scholar 

  8. Nicholson RV, Gillham RW, Reardon EJ. Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochim Cosmochim Acta. 1988;52(5):1077.

    Article  CAS  Google Scholar 

  9. Holmes PR, Crundwell FK. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: an electrochemical study. Geochim Cosmochim Acta. 2000;64(2):263.

    Article  CAS  Google Scholar 

  10. Sand W, Gehrke T, Jozsa PG, Schippers A. (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching. Hydrometallurgy. 2001;59(2–3):159.

    Article  CAS  Google Scholar 

  11. Tributsch H. Direct versus indirect bioleaching. Hydrometallurgy. 2001;59(2–3):177.

    Article  CAS  Google Scholar 

  12. Heidel C, Tichomirowa M. The isotopic composition of sulfate from anaerobic and low oxygen pyrite oxidation experiments with ferric iron—new insights into oxidation mechanisms. Chem Geol. 2011;281(3):305.

    Article  CAS  Google Scholar 

  13. Basson P, Gericke M, Grewar TL, Dew DW, Nicol MJ. The effect of sulphate ions and temperature on the leaching of pyrite. III. Bioleaching. Hydrometallurgy. 2013;133:176.

    Article  CAS  Google Scholar 

  14. Garrels RM, Thompson ME. Oxidation of pyrite by iron sulfate solutions. Am J Sci. 1960;258-A:57.

    Google Scholar 

  15. Singer PC, Stumm W. Acidic mine drainage: the rate-determining step. Science. 1970;167(3921):1121.

    Article  CAS  Google Scholar 

  16. Boon M, Brasser HJ, Hansford GS, Heijnen JJ. Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Hydrometallurgy. 1999;53(1):57.

    Article  CAS  Google Scholar 

  17. May N, Ralph DE, Hansford GS. Dynamic redox potential measurement for determining the ferric leach kinetics of pyrite. Miner Eng. 1997;10(11):1279.

    Article  CAS  Google Scholar 

  18. Ruitenberg R, Hansford GS, Reuter MA, Breed AW. The ferric leaching kinetics of arsenopyrite. Hydrometallurgy. 1999;52(1):37.

    Article  CAS  Google Scholar 

  19. Chandra AP, Gerson AR. The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep. 2010;65(9):293.

    Article  CAS  Google Scholar 

  20. Sun HY, Chen M, Zou LC, Shu RB, Ruan RM. Study of the kinetics of pyrite oxidation under controlled redox potential. Hydrometallurgy. 2015;155:13.

    Article  CAS  Google Scholar 

  21. Chandra AP, Gerson AR. Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1. Geochim Cosmochim Acta. 2011;75(22):6893.

    Article  CAS  Google Scholar 

  22. Nicol M, Miki H, Basson P. The effects of sulphate ions and temperature on the leaching of pyrite. 2. Dissolution rates. Hydrometallurgy. 2013;133:182.

    Article  CAS  Google Scholar 

  23. Li QC, Li DX, Qian FJ. Pre-oxidation of high-sulfur and high-arsenic refractory gold concentrate by ozone and ferric ions in acidic media. Hydrometallurgy. 2009;97(1):61.

    Article  CAS  Google Scholar 

  24. Lefticariu L, Schimmelmann A, Pratt LM, Ripley EM. Oxygen isotope partitioning during oxidation of pyrite by H2O2 and its dependence on temperature. Geochim Cosmochim Acta. 2007;71(21):5072.

    Article  CAS  Google Scholar 

  25. Lizama HM. A kinetic description of percolation bioleaching. Miner Eng. 2004;17(1):23.

    Article  CAS  Google Scholar 

  26. Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol. 1999;65(1):319.

    Article  CAS  Google Scholar 

  27. Nesbitt HW, Muir IJ. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air. Geochim Cosmochim Acta. 1994;58(21):4667.

    Article  CAS  Google Scholar 

  28. Nesbitt HW, Bancroft GM, Pratt AR, Scaini MJ. Sulfur and iron surface states on fractured pyrite surfaces. Am Mineral. 1998;83:1067.

    Article  CAS  Google Scholar 

  29. Schaufuß AG, Nesbitt HW, Kartio I, Laajalehto K, Bancroft GM, Szargan R. Reactivity of surface chemical states on fractured pyrite. Surf Sci. 1998;411(3):321.

    Article  Google Scholar 

  30. Nesbitt HW, Scaini M, Hochst H, Bancroft GM, Schaufuss AG, Szargan R. Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states. Am Mineral. 2000;85(5–6):850.

    Article  CAS  Google Scholar 

  31. Harmer SL, Thomas JE, Fornasiero D, Gerson AR. The evolution of surface layers formed during chalcopyrite leaching. Geochim Cosmochim Acta. 2006;70(17):4392.

    Article  CAS  Google Scholar 

  32. Chandra AP, Gerson AR. Pyrite (FeS2) oxidation: a sub-micron synchrotron investigation of the initial steps. Geochim Cosmochim Acta. 2011;75(20):6239.

    Article  CAS  Google Scholar 

  33. Logan TC, Seal T, Brierley JA. Whole-Ore Heap Biooxidation of Sulfidic Gold-Bearing Ores. Biomining: Springer; 2007. 113.

    Google Scholar 

  34. Modak JM, Natarajan KA, Mukhopadhyay S. Development of temperature-tolerant strains of Thiobacillus ferrooxidans to improve bioleaching kinetics. Hydrometallurgy. 1996;42(1):51.

    Article  CAS  Google Scholar 

  35. Franzmann PD, Haddad CM, Hawkes RB, Robertson WJ, Plumb JJ. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching bacteria and archaea: application of the Ratkowsky equation. Miner Eng. 2005;18(13):1304.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Research Fund for Program of Efficient Gold Extraction from Refractory Gold Ore of Sichuan Province, China (No. 12120113088100), the National Natural Science Foundation of China (Nos. 41401541 and 51474075) and the Bureau of International Co-operation, Chinese Academy of Sciences (No. 122111KYSB20150013). The authors are grateful to Professor Miao Chen for XPS analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Man Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, HY., Tan, QY., Jia, Y. et al. Pyrite oxidation in column at controlled redox potential of 900 mV with and without bacteria. Rare Met. 41, 4279–4288 (2022). https://doi.org/10.1007/s12598-016-0844-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0844-y

Keywords

Navigation