Skip to main content
Log in

Structures and hydrogen storage properties of RE–Mg–Ni–Mn-based AB2-type alloys prepared by casting and melt spinning

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To ameliorate the electrochemical hydrogen storage properties of RE–Mg–Ni–Mn-based AB2-type electrode alloys, La element was partially substituted by Ce, and La1−xCexMgNi3.5Mn0.5 (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by casting and melt spinning. The effects of Ce content on structures and electrochemical hydrogen storage properties of prepared alloys were studied in detail. Results show that the experimental alloys consist of LaMgNi4 and LaNi5 phases. The variation of Ce content, instead of changing phase composition, results in an obvious phase abundance change in the alloys, namely the amount of LaMgNi4 and LaNi5 phases, respectively, increases and decreases with Ce content growing. Moreover, the partial substitution of Ce for La leads to that the lattice keeps constant, cell volumes clearly decreases and the alloy grains are markedly refined. The electrochemical measurements reveal that the as-cast and as-spun alloys obtain the maximum discharge capacities at the first cycling without any activation needed. With Ce content increasing, the discharge capacity of as-cast alloys visibly decreases. By contrast, the as-spun alloys have the maximum discharge capacity value. The substitution of Ce for La dramatically promotes the cycle stability. Moreover, the electrochemical kinetic performances of as-cast and as-spun alloys first increase and then decrease with Ce content increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mori D, Hirose K. Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy. 2009;34(10):4569.

    Article  CAS  Google Scholar 

  2. Lan R, Irvine JTS, Tao S. Ammonia and related chemicals as potential indirect hydrogen storage materials. Int J Hydrogen Energy. 2012;37(2):1482.

    Article  CAS  Google Scholar 

  3. Kadir K, Noréus D, Yamashita I. Structure determination of AMgNi4 (where A = Ca, La, Ce, Pr, Nd and Y) in the AuBe5 type structure. J Alloys Compd. 2002;345(1–2):140.

    Article  CAS  Google Scholar 

  4. Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamammoto M, Kanda M. Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23, La3MgNi14. J Alloys Compd. 2000;311(2):L5.

    Article  CAS  Google Scholar 

  5. Wang ZM, Zhou HY, Gu ZF, Cheng G, Yu AB. Preparation of LaMgNi4 alloy and its electrode properties. J Alloys Compd. 2004;377(1–2):L7.

    Article  CAS  Google Scholar 

  6. Guénée L, Favre-Nicolin V, Yvon K. Synthesis, crystal structure and hydrogenation properties of the ternary compounds LaNi4Mg and NdNi4Mg. J Alloys Compd. 2003;348(1–2):129.

    Article  Google Scholar 

  7. Liu YF, Pan HG, Gao MX, Wang QD. Advanced hydrogen storage alloys for Ni/MH rechargeable batteries. J Mater Chem. 2011;21(13):4743.

    Article  CAS  Google Scholar 

  8. Liu YF, Cao YH, Huang L, Gao MX, Pan HG. Rare earth–Mg–Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries. J Alloys Compd. 2011;509(3):675.

    Article  CAS  Google Scholar 

  9. Zhang YH, Yang T, Shang HW, Zhao C, Xu C, Zhao DL. The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10−xMx (M = Cu Co, Mn; x = 0–4) alloys. Rare Met. 2014;33(6):663.

    Article  CAS  Google Scholar 

  10. Teresiak A, Uhlemann M, Thomas J, Eckert J, Gebert A. Influence of Co and Pd on the formation of nanostructured LaMg2Ni and its hydrogen reactivity. J Alloys Compd. 2014;582:647.

    Article  CAS  Google Scholar 

  11. Tian X, Yun GH, Wang HY, Shang T, Yao ZQ, Wei W, Liang XX. Preparation and electrochemical properties of La–Mg–Ni-based La0.75Mg0.25Ni3.3Co0.5 multiphase hydrogen storage alloy as negative material of Ni/MH battery. Int J Hydrogen Energy. 2014;39(16):8474.

    Article  CAS  Google Scholar 

  12. Zhai TT, Yang T, Yuan ZM, Zhang YH. An investigation on electrochemical and gaseous hydrogen storage performances of as-cast La1−xPrxMgNi3.6Co0.4 (x = 0–0.4) alloys. Int J Hydrogen Energy. 2014;39(26):14282.

    Article  CAS  Google Scholar 

  13. Yang T, Zhai TT, Yuan ZM, Bu WG, Xu S, Zhang YH. Hydrogen storage properties of LaMgNi3.6M0.4 (M = Ni, Co, Mn, Cu, Al) alloys. J Alloys Compd. 2014;617:29.

    Article  CAS  Google Scholar 

  14. Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N. In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloys Compd. 2005;398(1–2):156.

    Article  CAS  Google Scholar 

  15. Zhang YH, Chen LC, Yang T, Xu C, Ren HP, Zhao DL. The electrochemical hydrogen storage performances of Si-added La–Mg–Ni–Co-based A2B7-type electrode alloys. Rare Met. 2015;34(8):569.

    Article  CAS  Google Scholar 

  16. Zhang YH, Din RU, Li BW, Ren HP, Guo SH, Wang XL. Influence of the substituting Ni with Fe on the cycle stabilities of as-cast and as-quenched La0.7Mg0.3Co0.45Ni2.55−xFex (x = 0–0.4) electrode alloys. Mater Charact. 2010;61(3):305.

    Article  CAS  Google Scholar 

  17. Züttel A. Materials for hydrogen storage. Mater Today. 2003;6(9):24.

    Article  Google Scholar 

  18. Wu MS, Wu HR, Wang YY, Wan CC. Surface treatment for hydrogen storage alloy of nickel/metal hydride battery. J Alloys Compd. 2000;302(1–2):248.

    Article  CAS  Google Scholar 

  19. Orimo S, Fujii H. Materials science of Mg–Ni-based new hydrides. Appl Phys A. 2001;72(2):167.

    Article  CAS  Google Scholar 

  20. Wu Y, Han W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2Mn alloys. J Alloys Compd. 2008;466(1–2):176.

    Article  CAS  Google Scholar 

  21. Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrogen Energy. 2008;33(22):6727.

    Article  CAS  Google Scholar 

  22. Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.

    Article  CAS  Google Scholar 

  23. Cui N, Luo JL. Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes. Int J Hydrogen Energy. 1999;24(1):37.

    Article  CAS  Google Scholar 

  24. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd. 1993;202(1–2):183.

    Article  CAS  Google Scholar 

  25. Ruggeri S, Roué L, Huot J, Schulz R, Aymard L, Tarascon JM. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni–MH batteries. J Power Sources. 2002;112(2):547.

    Article  CAS  Google Scholar 

  26. Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL. Cycle stabilities of the La0.7Mg0.3Ni2.55−xCo0.45Mx (M = Fe, Mn, Al; x = 0, 0.1) electrode alloys prepared by casting and rapid quenching. J Alloys Compd. 2008;458(1–2):340.

    Article  CAS  Google Scholar 

  27. Zhao DL, Zhang YH. Research progress in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51161015, 51371094 and 51471054) and the Natural Science Foundation of Inner Mongolia, China (No. 2015MS0558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Huan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Hou, ZH., Cai, Y. et al. Structures and hydrogen storage properties of RE–Mg–Ni–Mn-based AB2-type alloys prepared by casting and melt spinning. Rare Met. 38, 1086–1096 (2019). https://doi.org/10.1007/s12598-016-0822-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0822-4

Keywords

Navigation