Skip to main content

Advertisement

Log in

Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of annealing temperature on microstructures, phase transformation, mechanical properties, and shape memory effect of Ti–20Zr–10Nb–5Al alloy were investigated. X-ray diffraction (XRD) patterns show that the alloy is composed of single hexagonal α′-martensite phase for both as-rolled sample and sample annealed at 773 K for 30 min, while single orthorhombic α″ phase exists in the samples annealed at 873 and 973 K for 30 min. The optical observations indicate that the alloy is recrystallized when annealed at 873 K, and the grain size of the sample annealed at 973 K is about five times larger than that annealed at 873 K. Both of the samples annealed at 873 and 973 K show almost the same reverse martensite transformation start temperature of 483 K as demonstrated by thermal dilatation tests. The critical stress values for martensite reorientation (σ M) are 392 and 438 MPa for the alloys annealed at 873 and 973 K, respectively. The maximum shape memory strain is 2.8 %, which is obtained in the alloy annealed at 873 K due to the lower σ M. Moreover, the sample annealed at 873 K exhibits larger tensile stress and tensile strain due to the smaller grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xie JX, Liu JL, Huang HY. Structure design of high-performance Cu-based shape memory alloys. Rare Met. 2015;34(9):607.

    Article  Google Scholar 

  2. Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.

    Article  Google Scholar 

  3. Liu TW, Zheng YJ, Cui LS. Irreversibility and transformation randomness of thermoelastic martensitic transformation in Ni–Ti alloys. Rare Met. 2015;34(12):833.

    Article  Google Scholar 

  4. Li Y, Cui LS, Zheng YJ, Yang DZ. DSC study of the reverse martensitic transformation in prestrained TiNi shape memory alloy in different composites. Mater Lett. 2001;51(1):73.

    Article  Google Scholar 

  5. Cui LS, Li Y, Zheng YJ, Yang DZ. Two stage recovery strain of prestrained TiNi shape memory alloy after phase transformations under constraint. Mater Lett. 2001;47(4–5):286.

    Article  Google Scholar 

  6. Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006;54(9):2419.

    Article  Google Scholar 

  7. Ye WJ, Mi XJ, Song XY. Martensitic transformation of Ti–18Nb(at%) alloy with zirconium. Rare Met. 2012;31(3):227.

    Article  Google Scholar 

  8. Zhou T, Aindow M, Alpay SP, Blackburn MJ, Wu MH. Pseudo-elastic deformation behavior in a Ti/Mo-based alloy. Scr Mater. 2004;50(3):343.

    Article  Google Scholar 

  9. Buenconsejo PJS, Kim HY, Miyazaki S. Novel β-TiTaAl alloys with excellent cold workability and a stable high-temperature shape memory effect. Scr Mater. 2011;64(12):1114.

    Article  Google Scholar 

  10. Buenconsejo PJS, Kim HY, Hosoda H, Miyazaki S. Shape memory behavior of Ti–Ta and its potential as a high-temperature shape memory alloy. Acta Mater. 2009;57(4):1068.

    Article  Google Scholar 

  11. Li Y, Cui Y, Zhang F, Xu H. Shape memory behavior in Ti–Zr alloys. Scr Mater. 2011;64(6):584.

    Article  Google Scholar 

  12. Cui Y, Li Y, Luo K, Xu H. Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Mater Sci Eng A. 2010;527(3):652.

    Article  Google Scholar 

  13. Xue PF, Li Z, Zhang F, Zhou CG. Shape memory effect and phase transformations of Ti–19.5Zr–10Nb–0.5Fe alloy. Scr Mater. 2015;101:99.

    Article  Google Scholar 

  14. Xue PF, Li Y, Li KM, Zhang DY, Zhou CG. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy. Mater Sci Eng, C. 2015;50:179.

    Article  Google Scholar 

  15. Ijaz MF, Kim HY, Hasoda H, Miyazaki S. Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys. Mater Sci Eng C. 2015;48:11.

    Article  Google Scholar 

  16. Li Y, Yao L, Cui XL, Cui Y. Microstructures and shape memory effect of binary Ti–Zr alloys. Chin J Rare Met. 2015;39(8):673.

    Google Scholar 

  17. Kim JI, Kim HY, Inamura T, Hosoda H, Miyazaki S. Shape memory characteristics of Ti–22Nb–(2–8)Zr(at%) biomedical alloys. Mater Sci Eng, A. 2005;403(1–2):334.

    Article  Google Scholar 

  18. Li Y, Ru ZF, Cui Y, Luo K. Phase stability and hardness of some ternary Ti–Zr based shape memory alloys. Int J Smart Nano Mater. 2011;2(4):272.

    Google Scholar 

  19. Ping DH, Mitarai Y, Yin FX. Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy. Scr Mater. 2005;52(12):1287.

    Article  Google Scholar 

  20. Yang ZY, Zheng XH, Cai W. Martensitic transformation and shape memory effect of Ti–V–Al light weight high-temperature shape memory alloys. Scr Mater. 2015;99:97.

    Article  Google Scholar 

  21. Liu Y, Xie Z, Humbeeck JV, Delaey L. Some results on the detwinning process in NiTi shape memory alloys. Scr Mater. 1999;41(12):1273.

    Article  Google Scholar 

  22. Liu FS, Ding Z, Li Y, Xu HB. Phase transformation behaviors and mechanical properties of TiNiMo shape memory alloys. Intermetallics. 2005;13(3–4):357.

    Article  Google Scholar 

  23. Li Y, Xin Y, Jiang CB, Xu HB. Mechanical and shape memory properties of Ni54Mn25Ga21 high temperature shape memory alloy. Mater Sci Eng, A. 2006;438(24):978.

    Article  Google Scholar 

  24. Farooq MU, Khalid FA, Zaigham H, Abidi IH. Superelastic behaviour of Ti–Nb–Al ternary shape memory alloys for biomedical applications. Mater Lett. 2014;121(2):58.

    Article  Google Scholar 

  25. Tahara M, Kim HY, Hosoda H, Miyazaki S. Cyclic deformation behavior of a Ti–26 at% Nb alloy. Acta Mater. 2009;57(8):2461.

    Article  Google Scholar 

  26. Xin Y, Li Y, Chai L, Xu HB. Shape memory characteristics of dual-phase Ni–Mn–Ga based high temperature shape memory alloys. Scr Mater. 2007;57(7):599.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2012CB619400), the National Natural Science Foundation of China (No. 51371016) and the Aeronautical Science Foundation of China (No. 2014ZF51070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, ZG., Xiong, CY., Xue, PF. et al. Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment. Rare Met. 35, 831–835 (2016). https://doi.org/10.1007/s12598-016-0799-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0799-z

Keywords

Navigation