Skip to main content
Log in

Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this study, the effects of tool rotational speed, tool traverse speed, and Zn content on the grain size and hardness of the friction-stir-welded (FSWed) Cu–Zn alloy joints were investigated. The microstructures of the joints were examined using optical microscope (OM) and scanning transmission electron microscope (STEM). Vickers hardness test was conducted to evaluate the hardness of the joints. In addition, the relationships between the process parameters, grain size, and hardness of the joints were established. The results show that the developed relationships predict the grain size and hardness of the joints accurately. The Zn content of the alloys is the most effective parameter on the grain size and hardness, where the tool traverse speed has the minimum effect. The relationship between the hardness and grain size of the joints has a deviation from the Hall–Petch equation due to formation of high dislocation density inside the grains. At higher Zn amounts, the dislocation tangles with high density form instead of dislocation cells, and hence, lower conformity with the Hall–Petch relationship is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction-stir welding-process, weldment structure and properties. Prog Mater Sci. 2008;53(6):980.

    Article  Google Scholar 

  2. Heidarzadeh A, Saeid T. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys. Mater Sci Eng A. 2016;649:349.

    Article  Google Scholar 

  3. Çam G. Friction stir welded structural materials: beyond Al-alloys. Int Mater Rev. 2011;56(1):1.

    Article  Google Scholar 

  4. Heidarzadeh A, Saeid T. On the effect of β phase on the microstructure and mechanical properties of friction stir welded commercial brass alloys. Data in Brief. 2015;5:1022.

    Article  Google Scholar 

  5. Heidarzadeh A, Kazemi-Choobi K, Hanifian H, Asadi P. 3-Microstructural Evolution. In: Givi MKB, Asadi P, editors. Advances in Friction-Stir Welding and Processing. Cambridge: Woodhead Publishing; 2014. 65.

    Chapter  Google Scholar 

  6. Ambroziak A. Hydrogen damage in friction welded copper joints. Mater Des. 2010;31(8):3869.

    Article  Google Scholar 

  7. Farrokhi H, Heidarzadeh A, Saeid T. Frictions stir welding of copper under different welding parameters and media. Sci Technol Weld Join. 2013;18(8):697.

    Article  Google Scholar 

  8. Galvão I, Leal RM, Rodrigues DM, Loureiro A. Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J Mater Process Technol. 2013;213(2):129.

    Article  Google Scholar 

  9. Heidarzadeh A, Jabbari M, Esmaily M. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model. Int J Adv Manuf Technol. 2015;77(9–12):1819.

    Article  Google Scholar 

  10. Hwang YM, Fan PL, Lin CH. Experimental study on friction stir welding of copper metals. J Mater Process Technol. 2010;210(12):1667.

    Article  Google Scholar 

  11. Leal RM, Sakharova N, Vilaça P, Rodrigues DM, Loureiro A. Effect of shoulder cavity and welding parameters on friction stir welding of thin copper sheets. Sci Technol Weld Joining. 2011;16(2):146.

    Article  Google Scholar 

  12. Shen JJ, Liu HJ, Cui F. Effect of welding speed on microstructure and mechanical properties of friction stir welded copper. Mater Des. 2010;31(8):3937.

    Article  Google Scholar 

  13. Sun YF, Fujii H. Investigation of the welding parameter dependent microstructure and mechanical properties of friction stir welded pure copper. Mater Sci Eng A. 2010;527(26):6879.

    Article  Google Scholar 

  14. Xu N, Ueji R, Morisada Y, Fujii H. Modification of mechanical properties of friction stir welded Cu joint by additional liquid CO2 cooling. Mater Des. 2014;56:20.

    Article  Google Scholar 

  15. Çam G, Serindağ HT, Çakan A, Mistikoglu S, Yavuz H. The effect of weld parameters on friction stir welding of brass plates. Materialwiss Werkstofftech. 2008;39(6):394.

    Article  Google Scholar 

  16. Emami S, Saeid T. Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass. Acta Metall Sin (Engl Lett). 2015;28(6):766.

    Article  Google Scholar 

  17. Sun YF, Xu N, Fujii H. The microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloys. Mater Sci Eng A. 2014;589:228.

    Article  Google Scholar 

  18. Xie GM, Ma ZY, Geng L. Effects of friction stir welding parameters on microstructures and mechanical properties of brass joints. Mater Trans. 2008;49(7):1698.

    Article  Google Scholar 

  19. Rajakumar S, Muralidharan C, Balasubramanian V. Predicting tensile strength, hardness and corrosion rate of friction stir welded AA6061–T6 aluminium alloy joints. Mater Des. 2011;32(5):2878.

    Article  Google Scholar 

  20. Palanivel R, Koshy Mathews P. Prediction and optimization of process parameter of friction stir welded AA5083-H111 aluminum alloy using response surface methodology. J Cent South Univ. 2012;19(1):1.

  21. Rajakumar S, Balasubramanian V. Establishing relationships between mechanical properties of aluminium alloys and optimised friction stir welding process parameters. Mater Des. 2012;40:17.

    Article  Google Scholar 

  22. Ghassemali E, Tan M-J, Wah CB, Lim SCV, Jarfors AEW. Effect of cold-work on the Hall–Petch breakdown in copper based micro-components. Mech Mater. 2015;80:124.

    Article  Google Scholar 

  23. Park S, Sato Y, Kokawa H. Microstructural evolution and its effect on Hall–Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D. J Mater Sci. 2003;38(21):4379.

    Article  Google Scholar 

  24. Azadbeh M, Mohammadzadeh A, Danninger H. Modeling the response of physical and mechanical properties of Cr–Mo prealloyed sintered steels to key manufacturing parameters. Mater Des. 2014;55:633.

    Article  Google Scholar 

  25. Azadbeh M, Mohammadzadeh A, Danninger H, Gierl-Mayer C. On the densification and elastic modulus of sintered Cr–Mo steels. Metall Mater Trans B. 2015;46(3):1471.

    Article  Google Scholar 

  26. Mohammadzadeh A, Azadbeh M, Danninger H. New concept in analysis of supersolidus liquid phase sintering of alpha brass. Powder Metall. 2015;58(2):123.

    Article  Google Scholar 

  27. Mohammadzadeh A, Azadbeh M, Danninger H. Microstructural coarsening during supersolidus liquid phase sintering of alpha brass. Powder Metall. 2015;58(4):300.

    Article  Google Scholar 

  28. Mohammadzadeh A, Azadbeh M, Namini SA. Densification and volumetric change during supersolidus liquid phase sintering of prealloyed brass Cu28Zn powder: modeling and optimization. Sci Sinter. 2014;46(1):23.

    Article  Google Scholar 

  29. Mozammel M, Mohammadzadeh A. The influence of pre-oxidation and leaching parameters on Iranian ilmenite concentrate leaching efficiency: optimization and measurement. Measurement. 2015;66:184.

    Article  Google Scholar 

  30. Heidarzadeh A, Barenji R, Esmaily M, Ilkhichi A. Tensile properties of friction stir welds of AA 7020 aluminum alloy. Trans Indian Inst Met. 2015;68(5):757.

    Article  Google Scholar 

  31. Heidarzadeh A, Saeid T, Khodaverdizadeh H, Mahmoudi A, Nazari E. Establishing a mathematical model to predict the tensile strength of friction stir welded pure copper joints. Metall Mater Trans B. 2013;44(1):175.

    Article  Google Scholar 

  32. McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scr Mater. 2008;58(5):349.

    Article  Google Scholar 

  33. Commin L, Dumont M, Masse JE, Barrallier L. Friction stir welding of AZ31 magnesium alloy rolled sheets: influence of processing parameters. Acta Mater. 2009;57(2):326.

    Article  Google Scholar 

  34. Arora A, De A, DebRoy T. Toward optimum friction stir welding tool shoulder diameter. Scr Mater. 2011;64(1):9.

    Article  Google Scholar 

  35. Mohamed FA. A dislocation model for the minimum grain size obtainable by milling. Acta Mater. 2003;51(14):4107.

    Article  Google Scholar 

  36. Parvin H, Kazeminezhad M. Dependency modeling of steady state grain size on the stacking fault energy through severe plastic deformation. Mater Lett. 2015;159:410.

    Article  Google Scholar 

  37. Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF. Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 2009;57(5):1586.

    Article  Google Scholar 

  38. Huang CX, Hu W, Yang G, Zhang ZF, Wu SD, Wang QY, Gottstein G. The effect of stacking fault energy on equilibrium grain size and tensile properties of nanostructured copper and copper–aluminum alloys processed by equal channel angular pressing. Mater Sci Eng A. 2012;556:638.

    Article  Google Scholar 

  39. Cai B, Tao J, Wang W, Yang X, Gong Y, Cheng L, Zhu X. The effect of stacking fault energy on equilibrium grain size and tensile properties of ultrafine-grained Cu–Al–Zn alloys processed by rolling. J Alloys Compd. 2014;610:224.

    Article  Google Scholar 

  40. Morishige T, Hirata T, Uesugi T, Takigawa Y, Tsujikawa M, Higashi K. Effect of Mg content on the minimum grain size of Al–Mg alloys obtained by friction stir processing. Scr Mater. 2011;64(4):355.

    Article  Google Scholar 

  41. Gallagher PCJ. The influence of alloying, temperature, and related effects on the stacking fault energy. Metall Mater Trans B. 1970;1(9):2429.

    Google Scholar 

  42. Zhao YH, Zhu YT, Liao XZ, Horita Z, Langdon TG. Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Mater Sci Eng A. 2007;463(1–2):22.

    Article  Google Scholar 

  43. Du D, Fu R, Li Y, Jing L, Wang J, Ren Y, Yang K. Modification of the Hall–Petch equation for friction-stir-processing microstructures of high-nitrogen steel. Mater Sci Eng A. 2015;640:190.

    Article  Google Scholar 

  44. Gao C, Zhu Z, Han J, Li H. Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy. Mater Sci Eng A. 2015;639:489.

    Article  Google Scholar 

  45. Sato Y, Park S, Kokawa H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metall Mater Trans A. 2001;32(12):3033.

    Article  Google Scholar 

  46. Jones MJ, Heurtier P, Desrayaud C, Montheillet F, Allehaux D, Driver JH. Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy. Scr Mater. 2005;52(8):693.

    Article  Google Scholar 

  47. Sato YS, Urata M, Kokawa H, Ikeda K. Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng A. 2003;354(1–2):298.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohid Saeid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidarzadeh, A., Saeid, T. Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys. Rare Met. 37, 388–398 (2018). https://doi.org/10.1007/s12598-016-0704-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0704-9

Keywords

Navigation