Skip to main content
Log in

On the Densification and Elastic Modulus of Sintered Cr-Mo Steels

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The densification and elastic properties of sintered Cr-Mo prealloyed steels of varying porosity were investigated as a function of Cr concentration, compacting pressure, and sintering temperature. Experiments were designed using the response surface methodology in order to model and evaluate the response of densification, porosity, static Young’s modulus, and dynamic Young’s modulus to the manufacturing parameters. Analysis of variance was used to validate the adequacy of the proposed models. The obtained mathematical models are useful not only for predicting the densification and elastic properties with higher accuracy but also for selecting optimum manufacturing parameters to achieve the desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Salak A., Selecka M., Danninger H. (2005) Machinability of Powder Metallurgy Steels. Cambridge Int Science Publishing, Cambridge.

    Google Scholar 

  2. Salak A. (1987) Ferrous Powder Metallurgy. Cambridge International Science Publishing, Cambridge.

    Google Scholar 

  3. M. Azadbeh, A. Mohammadzadeh, H. Danninger, Mater. Des., 55 (2014) 633-643.

    Article  Google Scholar 

  4. M. Azadbeh, H. Danninger, C. Gierl, Powder Metallurgy Progress, 7 (2007) 128.

    Google Scholar 

  5. M. Azadbeh, H. Danninger, C. Gierl, Powder Metallurgy Progress, 8 (2008) 83.

    Google Scholar 

  6. H. Danninger, C. Gierl, Science of Sintering, 40 (2008) 33-46.

    Article  Google Scholar 

  7. H. Danninger, G. Jangg, B. Weiss, R. Stickler, PMI. Powder metallurgy international, 25 (1993) 111-117.

    Google Scholar 

  8. Bergman O (2003) Eur. Powder Metall. Conf. 46(3):265–70.

    Article  Google Scholar 

  9. M. Azadbeh, C. Gierl, H. Danninger, Powder Metallurgy Progress, 6 (2006) 1-10.

    Google Scholar 

  10. H. Danninger, D. Spoljaric, G. Jangg, B. Weiss, R. Stickler, Praktische Metallographie, 31 (1994) 56-69.

    Google Scholar 

  11. A. Hadrboletz, B. Weiss, International materials reviews, 42 (1997) 1-44.

    Article  Google Scholar 

  12. N. Chawla, X. Deng, Materials Science and Engineering: A, 390 (2005) 98-112.

    Article  Google Scholar 

  13. J. Pan, A. Cocks, J. Rödel, R. Huang, H.N. Ch’ng, Journal of the American Ceramic Society, 92 (2009) 1414-1418.

    Article  Google Scholar 

  14. G.E.P. Box, K.B. Wilson, Journal of the Royal Statistical Society. Series B (Methodological), 13 (1951) 1-45.

    Google Scholar 

  15. A. Heidarzadeh, T. Saeid, H. Khodaverdizadeh, A. Mahmoudi, E. Nazari, Metall. Mater. Trans. B, 44B (2013) 175-183.

    Article  Google Scholar 

  16. A. Mohammadzadeh, M. Azadbeh, and H. Danninger: Powder Metall., (2014). doi:10.1179/1743290114Y.0000000114.

  17. A. Heidarzadeh, T. Saeid, Mater. Des., 52 (2013) 1077-1087.

    Article  Google Scholar 

  18. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd edn., Wiley, New York.

    Google Scholar 

  19. Montgomery DC (2008) Design and Analysis of Experiments. Wiley, New York.

    Google Scholar 

  20. C.H. Ji, N.H. Loh, K.A. Khor, S.B. Tor, Materials Science and Engineering: A, 311 (2001) 74-82.

    Article  Google Scholar 

  21. P.K. Bardhan, S. Patra, G. Sutradhar, Materials Sciences and Applications, 1 (2010) 152-157.

    Google Scholar 

  22. M.J. Davidson and N. Selvakumar: World Scientific and Engineering Academy and Society (WSEAS), Cambridge, 2012, pp. 48–54.

  23. A. Heidarzadeh, H. Khodaverdizadeh, A. Mahmoudi, E. Nazari, Mater. Des., 37 (2012) 166-173.

    Article  Google Scholar 

  24. Dhanapal A, RajendraBoopathy S, Balasubramanian V (2011) Mater. Des., 32:5066–72.

    Article  Google Scholar 

  25. B. Oraon, G. Majumdar, B. Ghosh, Mater. Des., 28 (2007) 2138-2148.

    Article  Google Scholar 

  26. B. Oraon, G. Majumdar, B. Ghosh, Mater. Des., 27 (2006) 1035-1045.

    Article  Google Scholar 

  27. ShanmugaSundaram N, Murugan N (2010) Mater. Des., 31:4184–93.

    Article  Google Scholar 

  28. F. Khan, D. Dwivedi, S. Sharma, Mater. Des., 34 (2012) 673-678.

    Article  Google Scholar 

  29. A. Nekahi, K. Dehghani, Mater. Des., 31 (2010) 3845-3851.

    Article  Google Scholar 

  30. K. Dehghani, A. Nekahi, M.A.M. Mirzaie, Mater. Des., 31 (2010) 1768-1775.

    Article  Google Scholar 

  31. A. Mohammadzadeh, M. Azadbeh, A. Sabahi Namini, Sci. Sinter., 46 (2014) 23-35.

    Article  Google Scholar 

  32. Hoganas AB Data Sheet Astaloy CrL/CrM, online availibe at www.hoganas.com, (2010).

  33. A. Mohammadzadeh, M. Mozammel, Measurement, DOI: 10.1016/j.measurement.2015.02.025 (2015).

    Google Scholar 

  34. M. Dlapka, H. Danninger, C. Gierl, B. Lindqvist, Metal Powder Report, 65 (2010) 30-33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziyar Azadbeh.

Additional information

Manuscript submitted January 11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadbeh, M., Mohammadzadeh, A., Danninger, H. et al. On the Densification and Elastic Modulus of Sintered Cr-Mo Steels. Metall Mater Trans B 46, 1471–1483 (2015). https://doi.org/10.1007/s11663-015-0315-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0315-0

Keywords

Navigation