Skip to main content
Log in

Phase precipitation behavior and tensile property of a Ti–Al–Sn–Zr–Mo–Nb–W–Si titanium alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The characteristic of precipitation behavior of α2 phase and silicide, and the tensile properties at room temperature and 650 °C after heat treatments in a novel Ti–Al–Sn–Zr–Mo–Nb–W–Si titanium alloy (BTi-6431S) were investigated by microstructure analysis and mechanics performance testing. The results show that no second phase precipitates after solution treatment (980 °C/2 h, air cooling (AC)). However, when the solution-treated specimens are aged at 600 °C (600 °C/2 h, AC), α2 phase precipitates in the primary α phase, and the size of α2 phase increases with the aging temperature increasing to 750 °C. Meanwhile, 50–100-nm S2-type silicide particles precipitate along lamellar phase boundaries of transformed β phase after aging at 750 °C. BTi-6431S alloy shows the best 650 °C ultimate tensile strength (UTS) and yield strength (YS) when treated in solution treatment. However, aging treatment results in a decline in 650 °C ultimate tensile strength. This may be attributed to the loss of solution strengthening due to the depletion of Al, Si and Zr of the matrix caused by the precipitation of Ti3Al and (TiZr)6Si3. Silicide is a brittle phase; therefore, its precipitation causes a sharp decrease in the room-temperature ductility of BTi-6431S alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyer RR. An overview on the use of titanium in the aerospace industry. Mater Sci Eng A. 1996;213(1–2):103.

    Article  Google Scholar 

  2. Wanjara P, Jahazi M, Monajati H, Yue S, Immarigeon JP. Hot working behavior of a near-α alloy IMI834. Mater Sci Eng A. 2005;396(1–2):50.

    Article  Google Scholar 

  3. Chandravanshi VK, Sarkar R, Kamat SV, Nandy TK. Effect of boron on microstructure and mechanical properties of thermomechanically processed near alpha titanium alloy Ti-1100. J Alloys Compd. 2011;509(18):5506.

    Article  CAS  Google Scholar 

  4. Zhao JW, Ding H, Hou HL, Li ZQ. Influence of hydrogen content on hot deformation behavior and microstructural evolution of Ti600 alloy. J Alloys Compd. 2010;491(1–2):673.

    Article  CAS  Google Scholar 

  5. Zhang WJ, Song XY, Hui SX, Ye WJ, Wang YL, Wang WQ. Tensile behavior at 700 °C in Ti–Al–Sn–Zr–Mo–Nb–W–Si alloy with bi-modal microstructure. Mater Sci Eng A. 2014;595:159.

    Article  CAS  Google Scholar 

  6. Zhang WJ, Song XY, Hui SX, Ye WJ, Wang YL, Wang XX. Effect of single annealing on the microstructure and mechanical properties of BTi-6431S titanium alloy. Chin J Nonferrous Met. 2013;23(6):1530.

    CAS  Google Scholar 

  7. Woodfield AP, Postans PJ, Loretto MH, Smallman RE. The effect of long-term high temperature exposure on the structure and properties of the titanium alloy Ti5331S. Acta Metall. 1998;36(3):507.

    Article  Google Scholar 

  8. Madsen A, Ghonem H. Separating the effect of Ti3Al and silicide precipitates on the tensile and crack growth behavior at room temperature and 593 °C in a near-α titanium alloy. Mater Eng Perform. 1995;4(3):301.

    Article  CAS  Google Scholar 

  9. Srinadh KVS, Singh N, Singh V. Role of Ti3Al/silicide on tensile properties of Timetal 834 at various temperatures. Bull Mater Sci. 2007;30(6):595.

    Article  CAS  Google Scholar 

  10. Madsen A, Audrieu E, Ghonem H. Microstructural changes during aging of a near-α titanium alloy. Mater Sci Eng A. 1993;171(1–2):191.

    Article  Google Scholar 

  11. Gogia AK. High-temperature titanium alloy. Def Sci J. 2005;55(2):149.

    Article  CAS  Google Scholar 

  12. Leyans C, Peters M. Titanium and Titanium Alloys. Weinheim: Wiley-VCH Verg Gmbh & Co. KGaA; 2003. 11.

    Book  Google Scholar 

  13. Singh AK, Ramachandra C, Tavafoghi M, Singh V. Microstructure of β-solution-treated, quenched and aged α + β titanium alloy Ti–6Al–1.6Zr–3.30Mo–0.3Si. J Alloys Compd. 1992;179(1–2):125.

    Article  CAS  Google Scholar 

  14. Zhang J, Wang QJ, Liu YY, Li L, Li D. Optimal selection and control for precipitation of α2 phase in near α high temperature Ti alloy during aging treatment. J Mater Sci Technol. 2004;20(5):574.

    CAS  Google Scholar 

  15. Ramachandra C, Singh AK, Sarma GMK. Microstructure characterization of near-α titanium alloy Ti–6Al–4Sn–4Zr–0.70Nb–0.50Mo–0.40Si. Metall Trans A. 1993;24(6):1273.

    Article  Google Scholar 

  16. Sridhar G, Sarma DS. Structure and properties of a β solution treated, quenched, and aged Si-bearing near-α titanium alloy. Metall Trans A. 1989;20(1):55.

    Article  Google Scholar 

  17. Ramachandra C, Singh V. Effect of silicide precipitation on tensile properties and fracture of alloy Ti–6Al–5Zr–0.5Mo–0.25S. Metall Trans A. 1985;16(2):227.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51201016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WJ., Song, XY., Hui, SX. et al. Phase precipitation behavior and tensile property of a Ti–Al–Sn–Zr–Mo–Nb–W–Si titanium alloy. Rare Met. 37, 1064–1069 (2018). https://doi.org/10.1007/s12598-015-0666-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0666-3

Keywords

Navigation