Skip to main content
Log in

FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathode materials were synthesized by carbonate-based co-precipitation method, and then, its surface was coated by thin layers of FePO4. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The XRD and TEM results suggest that both the pristine and the coated materials have a hexagonal layered structure, and the FePO4 coating layer does not make any major change in the crystal structure. The FePO4-coated sample exhibits both improved initial discharge capacity and columbic efficiency compared to the pristine one. More significantly, the FePO4 coating layer has a much positive influence on the cycling performance. The FePO4-coated sample exhibits capacity retention of 82 % after 100 cycles at 0.5 °C between 2.0 and 4.8 V, while only 28 % for the pristine one at the same charge–discharge condition. The electrochemical impedance spectroscopy (EIS) results indicate that this improved cycling performance could be ascribed to the presence of FePO4 on the surface of Li[Li0.2Ni0.13Co0.13Mn0.54]O2 particle, which helps to protect the cathode from chemical attacks by HF and thus suppresses the large increase in charge transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu Z, MacNeil DD, Dahn JR. Layered cathode materials Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem Solid State Lett. 2001;4(11):A191.

    Article  Google Scholar 

  2. Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li[Ni x Li(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.

    Article  Google Scholar 

  3. Kang SH, Amine K. Layered Li(Li0.2Ni0.15+0.5z Co0.10Mn0.55−0.5z )O2zF z cathode materials for Li-ion secondary batteries. J Power Sources. 2005;146(1–2):654.

    Article  Google Scholar 

  4. Johnson CS, Li N, Lefief C, Thackeray MM. Anomalous capacity and cycling stability of xLi2MnO3·(1−x)LiMO2 electrodes (M = Mn, Ni, Co) in lithium batteries at 50 °C. Electrochem Commun. 2007;9(4):787.

    Article  Google Scholar 

  5. Kim JS, Johnson CS, Thackeray MM. Electrochemical and structural properties of xLi2M′O3·(1−x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M′ = Ti, Mn, Zr; 0 ≤ x ≤ 0.3). Chem Mater. 2004;16:1996.

    Article  Google Scholar 

  6. Kang SH, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM. Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−x Ni0.5−x Co2x , 0 ≤ x ≤ 0.5). J Mater Chem. 2007;17(20):2069.

    Article  Google Scholar 

  7. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J Mater Chem. 2007;17(30):3112.

    Article  Google Scholar 

  8. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion Batteries. Adv Mater. 2012;24(9):1192.

    Article  Google Scholar 

  9. Yu H, Zhou H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem. Lett. 2013;4(8):1268.

    Article  Google Scholar 

  10. Manthiram A. Materials challenges and opportunities of lithium ion batteries. J Phys Chem Lett. 2011;2(3):176.

    Article  Google Scholar 

  11. Kang SH, Thackeray MM. Enhancing the rate capability of high capacity xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem Commun. 2009;11(4):748.

    Article  Google Scholar 

  12. Kim D, Gallagher KG, Kang SH. Synthesis and electrochemistry of Li x (Ni0.25−y Co2y Mn0.75−y )O z electrode materials with integrated ‘layered-spinel’ structure. In: 218th Electrochemical Society Meeting. Las Vegas; 2010. 407.

  13. West WC, Soler J, Smart MC, Ratnakumar BV, Firdosy S, Ravi V, Anderson MS, Hrbacek J, Lee ES, Manthiram A. Electrochemical behavior of layered solid solution Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J Electrochem Soc. 2011;158(8):A883.

    Article  Google Scholar 

  14. Singh G, Thomas R, Kumar A, Katiyar RS, Manivannan A. Electrochemical and structural investigations on ZnO treated 0.5Li2MnO3–0.5LiMn0.5Ni0.5O2 layered composite cathode material for lithium ion battery. J Electrochem Soc. 2012;159(4):A470.

    Article  Google Scholar 

  15. Wu F, Li N, Su Y, Lu H, Zhang L, An R, Wang Z, Bao L, Chen S. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials. J Mater Chem. 2012;22(4):1489.

    Article  Google Scholar 

  16. Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1−z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5−y Ni0.5−y Co2y ]O2. Solid State Ion. 2009;180(1):50.

    Article  Google Scholar 

  17. Wang Z, Liu E, Guo L, Shi C, He C, Li J, Zhao N. Cycle performance improvement of Li-rich layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol. 2013;235:570.

    Article  Google Scholar 

  18. Wu Y, Murugan AV, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4. J Electrochem Soc. 2008;155(9):A635.

    Article  Google Scholar 

  19. Wu Y, Manthiram A. Electrochem surface-modified layered Li[Li(1−x)/3Mn(2−x)/3Ni x/3Co x/3]O2 cathodes with low irreversible capacity loss. Solid State Lett. 2006;9:A221.

    Article  Google Scholar 

  20. Cho SW, Kim G, Ryu KS. Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ionics. 2012;206(1):84.

    Article  Google Scholar 

  21. Shin D, Wolverton C, Croy JR, Balasubramanian M, Kang SH, Rivera CML, Thackeray MM. First-principles calculations, electrochemical and X-ray absorption studies of Li–Ni–PO4 surface-treated xLi2MnO3·(1−x)LiMO2 (M = Mn, Ni, Co) electrodes for Li-ion batteries. J Electrochem Soc. 2012;159(2):A121.

    Article  Google Scholar 

  22. Lee SH, Koo BK, Kim JC, Kim KM. Effect of Co3(PO4)2 coating on Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for lithium rechargeable batteries. J Power Sources. 2008;184(1):276.

    Article  Google Scholar 

  23. Deng H, Belharouak I, Yoon CS, Sun YK, Amine K. High temperature performance of surface-treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 layered oxide. J Electrochem Soc. 2010;157(10):A1035.

    Article  Google Scholar 

  24. Kim JH, Parka MS, Songa JH, Byunb DJ, Kima YJ, Kima JS. Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3·0.5LiNi0.5Co0.2Mn0.3O2 composite material. J Alloys Compd. 2012;517:20.

    Article  Google Scholar 

  25. Li G, Yang Z, Yang W. Effect of FePO4 coating on electrochemical and safety performance of LiCoO2 as cathode material for Li-ion batteries. J Power Sources. 2008;183(2):741.

    Article  Google Scholar 

  26. Qing C, Bai Y, Yang J, Zhang W. Enhanced cycling stability of LiMn2O4 cathode by amorphous FePO4 coating. Electrochim Acta. 2011;56(19):6612.

    Article  Google Scholar 

  27. Liu D, Bai Y, Zhao S, Zhang W. Improved cycling performance of 5 V spinel LiMn1.5Ni0.5O4 by amorphous FePO4 coating. J Power Sources. 2012;219:333.

    Article  Google Scholar 

  28. Liu X, Li H, Yoo E, Ishid M, Zhou H. Fabrication of FePO4 layer coated LiNi1/3Co1/3Mn1/3O2: towards high-performance cathode materials for lithium ion batteries. Electrochim Acta. 2012;83:253.

    Article  Google Scholar 

  29. Bai Y, Wang X, Yang S, Zhang X, Yang X, Shu H, Wu Q. The effects of FePO4-coating on high-voltage cycling stability and rate capability of Li[Ni0.5Co0.2Mn0.3]O2. J Alloys Compd. 2012;541:125.

    Article  Google Scholar 

  30. Jarvis KA, Deng Z, Allard LF, Manthiram A, Ferreira PJ. Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem Mater. 2011;23(16):3614.

    Article  Google Scholar 

  31. Armstrong AR, Holzapfel M, Novak P, Johnson CS, Kang SH, Thackeray MM, Bruce PG. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc. 2006;128(26):8694.

    Article  Google Scholar 

  32. Ju JH, Cho SW, Hwang SG, Yun SR, Lee Y, Jeong HM, Hwang MJ, Kim KM, Ryu KS. Electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 modified by carbons as cathode materials. Electrochim Acta. 2011;56(24):8791.

    Article  Google Scholar 

  33. He W, Qian J, Cao Y, Ai X, Yang H. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries. RSC Adv. 2012;2(8):3423.

    Article  Google Scholar 

  34. Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J Power Sources. 2010;195(2):567.

    Article  Google Scholar 

  35. Levi MD, Gamolsky K, Aurbach D, Heiden U, Oesten R. On electrochemical impedance measurements of Li x Co0.2Ni0.8O2 and Li x NiO2 intercalation electrodes. Electrochim Acta. 2000;45(11):1781.

    Article  Google Scholar 

  36. Shaju KM, Rao GVS, Chowdari BVR. Electrochemical kinetic studies of Li-ion in O2-structured Li2/3(Ni1/3Mn2/3)O2 and Li(2/3)+x (Ni1/3Mn2/3)O2 by EIS and GITT. J Electrochem Soc. 2003;150(1):A1.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Nature Science Foundation of China (No. 51302017), the National High Technology Research and Development Program of China (No. 2012AA110102), and the fund from the Science and Technology Commission of Beijing (No. Z121100006712002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Lu, HQ., Yin, YP. et al. FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries. Rare Met. 36, 899–904 (2017). https://doi.org/10.1007/s12598-015-0647-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0647-6

Keywords

Navigation