Skip to main content
Log in

Enhanced electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with ZrF4 surface modification as cathode for Li-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The amorphous ZrF4 layer with various concentrations coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes were synthesized by using the chemical deposition technology. The combinations of XRD, SEM and TEM results indicated that the nanoparticles ZrF4 layer was successfully covered on the surface of the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 particles. Compared to the pristine Li[Li0.2Mn0.54Ni0.13Co0.13]O2, the cathodes after ZrF4 coating demonstrated the obviously enhanced electrochemical properties. The 2 wt% ZrF4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 delivered a high capacity retention of 91.9% after 100 cycles at 0.5 C, much higher than that (84.5%) of the uncoated sample. Besides, the discharge capacity of 2 wt% ZrF4-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 was approximately 20.0 mAh g−1 larger than that of the pristine Li1.20[Mn0.54Ni0.13Co0.13]O2 at various current densities. The EIS analysis indicated the remarkably enhanced electrochemical properties of the surface-modified electrode was ascribed to the fact that the ZrF4 coating layer could restrict the side reaction between cathodes with electrolyte and protect the cathode surface from HF corrosion, further accelerate the Li+ diffusion rate in the cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.J. Armstrong, C.O. Dwyer, W.J. Macklin, J.D. Holmes, Evaluating the performances of nanostructured materials as lithium ion battery electrodes. Nano Res. 7, 1–62 (2014)

    Article  Google Scholar 

  2. J. Ou, L. Yang, X.H. Xi, Flour-assisted simple fabrication of LiCoO2 with enhanced electrochemical performances for lithium ion batteries. J. Mater. Sci. 27, 9008–9014 (2016)

    Google Scholar 

  3. Z. Yi, Rheological phase reaction synthesis of Co-doped LiMn2O4 octahedral particles. J. Mater. Sci. 27, 10347–10352 (2016)

    Google Scholar 

  4. W. Tang, L.L. Liu, S. Tian, L. Li, Y.B. Yue, Y.P. Wu, S.Y. Guan, K. Zhu, Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochem. Commun. 12, 1524–1526 (2010)

    Article  Google Scholar 

  5. F. Wu, J. Tian, Y.F. Su, Y.B. Guan, Y. Jin, Z. Wang, T. He, L.Y. Bao, S. Chen, Lithium-active molybdenum trioxide coated LiNi0.5Co0.2Mn0.3O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. J. Power Sour. 269, 747–754 (2014)

    Article  Google Scholar 

  6. Y.Y. Liu, C.B. Cao, J. Li, Enhanced electrochemical performance of carbon nanospheres–LiFePO4 composite by PEG based sol–gel synthesis. Electrochim. Acta 55, 3921–3926 (2010)

    Article  Google Scholar 

  7. S. Zhao, Y. Bai, Q.J. Chang, Y.Q. Yang, W.F. Zhang, Surface modification of spinel LiMn2O4 with FeF3 for lithium ion batteries. Electrochim. Acta 108, 727–735 (2013)

    Article  Google Scholar 

  8. X. Jiang, Z.H. Wang, D. Rooney, X.X. Zhang, J. Feng, J.S. Qiao, W. Sun, K.N. Sun, A design strategy of large grain lithium-rich layered oxides for lithium-ion batteries cathode. Electrochim. Acta 160, 131–138 (2015)

    Article  Google Scholar 

  9. Z. Shen, Dong Li, Influence of lithium content on the structural and electrochemical properties of Li1.20+xMn0.54Ni0.13Co0.13O2 cathode materials for Li-ion batteries. J. Mater. Sci. (2017). doi:10.1007/s10854-017-7160-7

    Google Scholar 

  10. L.J. Xi, C.W. Cao, R.G. Ma, Y. Wang, S.L. Yang, J.Q. Deng, M. Gao, F. Lian, Z.G. Lu, C.Y. Chung, Layered Li2MnO3·3LiNi(0.5-x)Mn(0.5-x)Co(2x)O2 microspheres with Mn-rich cores as high performance cathode materials for lithium ion batteries. Phys. Chem. Chem. Phys. 15, 16579–16585 (2013)

    Article  Google Scholar 

  11. S.J. Shi, J.P. Tu, Y.Y. Tang, Y.X. Yu, Y.Q. Zhang, X.L. Wang, Synthesis and electrochemical performance of Li1.131Mn0.504Ni0.243Co0.122O2 cathode materials for lithium ion batteries via freeze drying. J. Power Sour. 221, 300–307 (2013)

    Article  Google Scholar 

  12. E.S. Han, Y.P. Li, L.Z. Zhu, L. Zhao, The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries. Solid State Ionics 255, 113–119 (2014)

    Article  Google Scholar 

  13. Q. Xi. Bian, X. Fu, P. Bie, H. Yang, Q. Qiu, G. Pang, F. Chen, Y. Du, Wei, Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim. Acta 174, 875–884 (2015)

    Article  Google Scholar 

  14. Z.Y. Wang, E.Z. Liu, C.N. He, C.S. Shi, J.J. Li, N.Q. Zhao, Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J. Power Sour. 236, 25–32 (2013)

    Article  Google Scholar 

  15. C. Lu, H. Wu, Y. Zhang, H. Liu, B.J. Chen, N.T. Wu, S. Wang, Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J. Power Sour. 267, 682–691 (2014)

    Article  Google Scholar 

  16. C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries. Electrochim. Acta 51, 3872–3883 (2006)

    Article  Google Scholar 

  17. G.-H. Lee, I.H. Choi, M.Y. Oh, S.H. Park, K.S. Nahm, V. Aravindan, Y.-S. Lee, Confined ZrO2 encapsulation over high capacity integrated 0.5Li[Ni0.5Mn1.5]O4·0.5[Li2MnO3·Li(Mn0.5Ni0.5)O2] cathode with enhanced electrochemical performance. Electrochim. Acta 194, 454–460 (2016)

    Article  Google Scholar 

  18. J.Z. Kong, S.S. Wang, G.A. Tai, L. Zhu, L.G. Wang, H.F. Zhai, D. Wu, A.D. Li, H. Li, Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode material by ultrathin ZrO2 coating. J. Alloys Compd. 657, 593–600 (2016)

    Article  Google Scholar 

  19. C.-D. Li, Z.-L. Yao, J. Xu, P. Tang, X. Xiong, Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery. Ionics 23, 549–558 (2017)

    Article  Google Scholar 

  20. S. Ma, X. Hou, Y. Li, Q. Ru, S. Hu, K. Lam, Performance and mechanism research of hierarchically structured Li-rich cathode materials for advanced lithium–ion batteries. J. Mater. Sci. 28, 2705–2715 (2017)

    Google Scholar 

  21. F. Wu, Z. Wang, Y. Su, N. Yan, L. Bao, S. Chen, Li[Li0.2Mn0.54Ni0.13Co0.13]O2–MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J. Power Sour. 247, 20–25 (2014)

    Article  Google Scholar 

  22. Q.R. Xue, J.L. Li, G.F. Xu, H.W. Zhou, X.D. Wang, F.Y. Kang, In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J. Mater. Chem. A 2, 18613–18623 (2014)

    Article  Google Scholar 

  23. L. Li, X. Zhang, R. Chen, T. Zhao, J. Lu, F. Wu, K. Amine, Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries. J. Power Sour. 249, 28–34 (2014)

    Article  Google Scholar 

  24. M. Bettge, Y. Li, B. Sankaran, N.D. Rago, T. Spila, R.T. Haasch, I. Petrov, D.P. Abrahama, Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifying the positive electrode with alumina. J. Power Sour. 233, 346–357 (2013)

    Article  Google Scholar 

  25. H. Zhang, Q.Q. Qiao, G.R. Li, X.P. Gao, PO4 3– polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J. Mater. Chem. A 2, 7454–7460 (2014)

    Article  Google Scholar 

  26. J. Wang, G.X. Yuan, M.H. Zhang, B. Qiu, Y.G. Xia, Z.P. Liu, Li1+xNi1/6Co1/6Mn4/6O2.25+x/2 (0.1 ≤ x ≤ 0.7) cathode materials. Electrochim. Acta 66, 61–66 (2012)

    Article  Google Scholar 

  27. G.B. Liu, H. Liu, Y.F. Shi, The synthesis and electrochemical properties of xLi2MnO3·(1-x)MO2 (M = Mn1/3Ni1/3Fe1/3) via coprecipitation method. Electrochim. Acta 88, 112–116 (2013)

    Article  Google Scholar 

  28. X.Y. Liu, J.L. Liu, T. Huang, A.S. Yu, CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 109, 52–58 (2013)

    Article  Google Scholar 

  29. Y. Li, M. Bettge, B. Polzin, Y. Zhu, M. Balasubramanian, D.P. Abraham, Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-Ion cells. J. Electrochem. Soc. 160, A3006-A3019 (2013)

    Google Scholar 

  30. S.J. Shi, J.P. Tu, Y.J. Zhang, Y.D. Zhang, X.Y. Zhao, X.L. Wang, C.D. Gu, Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries. Electrochim. Acta 108, 441–448 (2013)

    Article  Google Scholar 

  31. X. Ma, H. He, Y. Sun, Y. Zhang, Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol-gel method and its electrochemical properties as cathode materials for lithium-ion batteries. J. Mater. Sci. (2017). doi:10.1007/s10854-017-7578-y

    Google Scholar 

  32. J.R. Croy, K.G. Gallagher, M. Balasubramanian, Z.H. Chen, Y. Ren, D.H. Kim, S.H. Kang, D.W. Dees, M.M. Thackeray, Examining hysteresis in composite xLi2MnO3·(1 – x)LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013)

    Article  Google Scholar 

  33. B. Liu, Z. Zhang, J. Wan, S. Liu, Improved electrochemical properties of YF3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode for Li-ion batteries. Ionics 23, 1365–1374 (2017)

    Article  Google Scholar 

  34. Q. Li, Y. Hu, L. Li, C. Feng, Synthesis and electrochemical performances of MnxCoyNizCO3. J. Mater. Sci. 27, 1700–1707 (2016)

    Google Scholar 

  35. W. Zhu, W. Li, S. Mu, Y. Yang, X. Zuo, The adhesion performance of epoxy coating on AA6063 treated inTi/Zr/V based solution. Appl. Surf. Sci. 384, 333–340 (2016)

    Article  Google Scholar 

  36. J. Zheng, S.N. Deng, Z.C. Shi, H.J. Xu, H. Xu, Y.F. Deng, Z. Zhang, G.H. Chen, The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J. Power Sour. 221, 108–113 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei University of Technology (Grant No. 15YCKLQ004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangchuan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Y., Huang, B., Jiao, C. et al. Enhanced electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with ZrF4 surface modification as cathode for Li-ion batteries. J Mater Sci: Mater Electron 29, 524–534 (2018). https://doi.org/10.1007/s10854-017-7943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7943-x

Navigation