Skip to main content
Log in

Irreversibility and transformation randomness of thermoelastic martensitic transformation in Ni–Ti alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, the in situ optical observation was carried out in complete and incomplete transformation cycles of Ni–Ti alloys. In complete transformation cycles, initial martensite plates nucleate randomly in austenite. However, in a partial transformation cycle, the existing martensite plates have an influence on guiding the formation of subsequent martensite plates. And the randomness decreases with the decrease in transformation volume involved in the partial cycle. It is suggested that the randomness of transformations contributes to the introduction of defects, and the irreversibility associates with transformation randomness of martensite plates. For instance, a higher randomness in transformations could introduce more defects and more obvious irreversibility. On the other hand, defects generated in thermoelastic martensitic transformation are responsible for the hysteresis of transformations. Therefore, the randomness of transformations also contributes to the transformation hysteresis. These results could help further understanding on some martensitic transformation phenomena of shape memory alloys, such as the nonlinear and history-dependent characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wayman CM. Thermoelastic martensitic transformations and the nature of the shape memory effect. MRS Proc. 1983;21:657.

    Article  Google Scholar 

  2. Otsuka K, Wayman CM. Shape Memory Materials. Cambridge: Cambridge University Press; 1998. 27.

  3. Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.

    Article  Google Scholar 

  4. Airoldi G, Corsi A, Riva G. The hysteresis cycle modification in thermoelastic martensitic transformation of shape memory alloys. Scr Mater. 1997;36(11):1273.

    Article  Google Scholar 

  5. Airoldi G, Corsi A, Riva G. Step-wise martensite to austenite reversible transformation stimulated by temperature or stress: a comparison in NiTi alloys. Mater Sci Eng A. 1998;241(1–2):233.

    Article  Google Scholar 

  6. Miyazaki S, Igo Y, Otsuka K. Effect of thermal cycling on the transformation temperatures of Ti–Ni alloys. Acta Metal. 1986;34(10):2045.

    Article  Google Scholar 

  7. Madangopal K, Banerjee S, Lele S. Thermal arrest memory effect. Acta Metal Mater. 1994;42(6):1875.

    Article  Google Scholar 

  8. Rodríguez-Aseguinolaza J, Ruiz-Larrea I, Nó ML, López-Echarri A, San Juan J. The influence of partial cycling on the martensitic transformation kinetics in shape memory alloys. Intermetallics. 2009;17(9):749.

    Article  Google Scholar 

  9. Liu TW, Zheng YJ, Cui LS. Influence of partial cycling on the transformation mass of NiTi alloys. Mater Lett. 2013;112:121.

    Article  Google Scholar 

  10. Perkins J. Lattice transformations related to unique mechanical effects. Metall Trans. 1973;4(12):2709.

    Article  Google Scholar 

  11. Sandrock GD, Perkins AJ, Hehemann RF. The premartensitic instability in near-equiatomic TiNi. Metall Trans. 1971;2(10):2769.

    Article  Google Scholar 

  12. Bhattacharya K, Conti S, Zanzotto G, Zimmer J. Crystal symmetry and the reversibility of martensitic transformations. Nature. 2004;428(6978):55.

    Article  Google Scholar 

  13. Hornbogen E. Reversibility and hysteresis of martensitic transformations. Phys Stat Sol B. 1992;172(1):161.

    Article  Google Scholar 

  14. Rodríguez-Aseguinolaza J, Ruiz-Larrea I, Nó ML, López-Echarri A, Bocanegra EH, San Juan J. Thermal history effects of Cu–Al–Ni shape memory alloys powder particles compared with single crystals behavior. Intermetallics. 2010;18(11):2183.

    Article  Google Scholar 

  15. Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater. 2010;58(5):1850.

    Article  Google Scholar 

  16. Ortinh J, Planes A. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 1988;36(8):1873.

    Article  Google Scholar 

  17. Paskal YI, Monasevich LA. Hysteresis features of the martensitic transformation of titanium nickelide. Phys Met Metall. 1981;52(5):95.

    Google Scholar 

  18. Amengual A, Likhachev AA, Cesari E. An experimental study of the partial transformation cycling of shape memory alloys. Scr Mater. 1996;34(10):1549.

    Article  Google Scholar 

  19. Kahn H, Huff MA, Heuer AH. The TiNi shape-memory alloy and its applications for MEMS. J Micromech Microeng. 1998;8(3):213.

    Article  Google Scholar 

  20. Ziólkowski A. Three-dimensional phenomenological thermodynamic model of pseudoelasticity of shape memory alloys at finite strains. Contin Mech Thermodyn. 2007;19(6):379.

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-06-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jun Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TW., Zheng, YJ. & Cui, LS. Irreversibility and transformation randomness of thermoelastic martensitic transformation in Ni–Ti alloys. Rare Met. 34, 833–837 (2015). https://doi.org/10.1007/s12598-015-0627-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0627-x

Keywords

Navigation