Skip to main content
Log in

Transformation entropy change and precursor phenomena in Ni-rich Ti-Ni shape memory alloys

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Many issues concerning the transformation behaviors in the Ni-rich Ti-Ni system remain unresolved, such as the isothermal nature of the B19′-martensitic and R-phase transformations and the precursor phenomena in the B2-parent phase. To clarify the origins of these behaviors, we investigated the transformation latent heat, specific heat, and superelastic behaviors of several Ni-rich Ti-Ni alloys in terms of the entropy change. An anomalous, very wide hump in the specific heat was detected for the B2-parent phase, which can likely be attributed to the precursor phenomenon in the B2-parent phase. In the critical region where the anomalous hump intersects the B19′-martensitic transformation, some evidences of the R-phase transformation were observed, such as a tweed-like microstructure and a specific heat peak with first-order-transformation characteristics. These findings suggest a strong relationship between the R phase and the precursor state in the B2-parent phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. K. Otsuka and C.M. Wayman: Shape Memory Materials (Cambridge University Press, U.K., 1998).

    Google Scholar 

  2. Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka, and X. Ren: Phase diagram of Ti50−xNi50+ x: Crossover from martensite to strain glass. Phys. Rev. B 81, 224102 (2010).

    Article  Google Scholar 

  3. S. Sarkar, X. Ren, and K. Otsuka: Evidence for strain glass in the ferroelastic–martensitic system Ti50−xNi50+ x. Phys. Rev. Lett. 95, 205702 (2005).

    Article  Google Scholar 

  4. Y. Wang, X. Ren, K. Otsuka, and A. Saxena: Evidence for broken ergodicity in strain glass. Phys. Rev. B 76, 132201 (2007).

    Article  Google Scholar 

  5. K. Niitsu, Y. Kimura, X. Xu, and R. Kainuma: Composition dependences of entropy change and transformation temperatures in Ni-rich Ti–Ni system. Shap. Mem. Superelasticity 1, 124 (2015).

    Article  Google Scholar 

  6. T. Fukuda, S. Yoshida, and T. Kakeshita: Isothermal nature of the B2–B19′ martensitic transformation in a Ti–51.2 Ni (at.%) alloy. Scr. Mater. 68, 984 (2013).

    Article  CAS  Google Scholar 

  7. Y. Ji, D. Wang, X. Ding, K. Otsuka, and X. Ren: Origin of an isothermal R-martensite formation in Ni-rich Ti–Ni solid solution: Crystallization of strain glass. Phys. Rev. Lett. 114, 055701 (2015).

    Article  Google Scholar 

  8. K. Niitsu, T. Omori, and R. Kainuma: Stress-induced transformation behaviors at low temperatures in Ti–51.8 Ni (at.%) shape memory alloy. Appl. Phys. Lett. 102, 231915 (2013).

    Article  Google Scholar 

  9. T. Hara, T. Ohba, E. Okunishi, and K. Otsuka: Structural study of R-phase in Ti–50.23 at.% Ni and Ti–47.75 at.% Ni–1.50 at.% Fe alloys. Mater. Trans. Japan Inst. Metals 38, 11 (1997).

    CAS  Google Scholar 

  10. M-S. Choi, T. Fukuda, T. Kakeshita, and H. Mori: Incommensurate–commensurate transition and nanoscale domain-like structure in iron doped Ti–Ni shape memory alloys. Philos. Mag. 86, 67 (2006).

    Article  CAS  Google Scholar 

  11. M-S. Choi, J. Ogawa, T. Fukuda, and T. Kakeshita: Stability of the B2-type structure and R-phase transformation behavior of Fe or Co doped Ti–Ni alloys. Mater. Sci. Eng., A 438–440, 527 (2006).

    Article  Google Scholar 

  12. Y. Kimura, X. Xu, K. Niitsu, T. Omori, and R. Kainuma: Martensitic transformations and superelastic behavior at low temperatures in Ti50−xNi40+ xCu10 shape memory alloys. Mater. Trans. 57, 269 (2016).

    Article  CAS  Google Scholar 

  13. T. Kakeshita, T. Fukuda, H. Tetsukawa, T. Saburi, K. Kindo, T. Takeuchi, M. Honda, S. Endo, T. Taniguchi, and Y. Miyako: Negative temperature coefficient of electrical resistivity in B2-type Ti–Ni alloys. Jpn. J. Appl. Phys. 37, 2535 (1998).

    Article  CAS  Google Scholar 

  14. Y. Murakami and D. Shindo: Lattice modulation preceding to the R-phase transformation in a Ti50Ni48Fe2 alloy studied by TEM with energy-filtering. Mater. Trans. JIM 40, 1092 (1999).

    Article  CAS  Google Scholar 

  15. K. Niitsu: Superelastic properties at cryogenic temperatures in Ti–Ni, Ni–Co–Mn–In and Cu–Al–Mn shape memory alloys. Ph.D. thesis, Tohoku University, Japan, 2014.

    Google Scholar 

  16. K. Niitsu, X. Xu, R.Y. Umetsu, and R. Kainuma: Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy. Appl. Phys. Lett. 103, 242406 (2013).

    Article  Google Scholar 

  17. X. Xu, W. Ito, R.Y. Umetsu, R. Kainuma, and K. Ishida: Anomaly of critical stress in stress-induced transformation of NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 95, 181905 (2009).

    Article  Google Scholar 

  18. W. Ito, K. Ito, R.Y. Umetsu, R. Kainuma, K. Koyama, K. Watanabe, A. Fujita, K. Oikawa, K. Ishida, and T. Kanomata: Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 92, 021908 (2008).

    Article  Google Scholar 

  19. X. Xu, T. Kihara, M. Tokunaga, A. Matsuo, W. Ito, R.Y. Umetsu, K. Kindo, and R. Kainuma: Magnetic field hysteresis under various sweeping rates for Ni–Co–Mn–In metamagnetic shape memory alloys. Appl. Phys. Lett. 103, 122406 (2013).

    Article  Google Scholar 

  20. J.C. Lashley, F.R. Drymiotis, D.J. Safarik, and J.L. Smith: Contribution of low-frequency modes to the specific heat of Cu–Zn–Al shape-memory alloys. Phys. Rev. B 75, 064304 (2007).

    Article  Google Scholar 

  21. T. Fukuda, M.S. Choi, T. Kakeshita, and T. Ohba: Inelastic neutron scattering of a Ti–44 at.% Ni–6 at.%. Mater. Sci. Eng., A 481–482, 235 (2008).

    Article  Google Scholar 

  22. R.J. Wasilewski, S.R. Butler, and J.E. Hanlon: On the martensitic transformation in TiNi. Met. Sci. J. 1, 104 (1967).

    Article  CAS  Google Scholar 

  23. H.A. Berman, E.D. West, and A.G. Rozner: Anomalous heat capacity of TiNi. J. Appl. Phys. 38, 4473 (1967).

    Article  CAS  Google Scholar 

  24. W. Tang: Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti–Ni shape memory alloys. Metall. Mater. Trans. A 28, 537 (1997).

    Article  Google Scholar 

  25. P.D. Bogdanoff and B. Fultz: The role of phonons in the thermodynamics of the martensitic transformation in NiTi. Philos. Mag. B 81, 299 (2001).

    Article  CAS  Google Scholar 

  26. J.I. Kim, Y. Liu, and S. Miyazaki: Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni. Acta Mater. 52, 487 (2004).

    Article  CAS  Google Scholar 

  27. T. Honma and H. Takei: Effect of heat treatment on the martensitic transformation in TiNi compound. Nihon Kinzoku Gakkaishi 39, 175 (1975). (in Japanese).

    CAS  Google Scholar 

  28. S. Miyazaki and K. Otsuka: Deformation and transition behavior associated with the R-phase in Ti–Ni alloys. Metall. Trans. A 17, 53 (1986).

    Article  Google Scholar 

  29. X. Wang, B. Verlinden, and J.V. Humbeeck: Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys. Intermetallics 62, 43 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This study was supported by a Grant-in-Aid for Scientific Research (Grant No. JP16K21632) by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kodai Niitsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niitsu, K., Kimura, Y. & Kainuma, R. Transformation entropy change and precursor phenomena in Ni-rich Ti-Ni shape memory alloys. Journal of Materials Research 32, 3822–3830 (2017). https://doi.org/10.1557/jmr.2017.377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.377

Navigation