Skip to main content
Log in

Micro-scratch behavior of WC particle-reinforced copper matrix composites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The WC particle-reinforced copper matrix composites with WC content in the range of 5 vol%–30 vol% were prepared and investigated by micro-scratch tests under the loads of 1–4 N. The influences of normal load and WC content on friction coefficient and wear volume of the composites were studied. The hardness and scratch resistance of the composites are greatly improved by the addition of WC. The penetrate depth and residual depth increase near-linearly with normal load increasing and decrease with WC content increasing, and the friction coefficient of the composites also shows the same variation trend. The valid material removal mechanism is found to transform from micro-plowing to micro-cutting as the normal load increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li R, Chen W, Wang L. Effects of fiber distribution on density and electrical conductivity of tungsten fiber reinforced Cu-based composite material. Chin J Rare Met. 2013;37(2):243.

    CAS  Google Scholar 

  2. Chen BB, Chen S, Yang J, Li HP, Guo S, Tang H, Li CS. Tribological properties of Cu-based composites with S-doped NbSe2. Rare Met. 2015;34(6):407.

    Article  CAS  Google Scholar 

  3. Zhang XM, Guo H, Yin FZ, Han YY, Fan YM, Wang PP. Improving method of interface bonding state in diamond/Cu composite material. Chin J Rare Met. 2013;37(2):335.

    CAS  Google Scholar 

  4. Zhang L, Qu XH, Duan BH, He XB, Lu X, Qin ML. Study on microstructure and properties of SiC/Cu composites fabricated by spark plasma sintering. Chin J Rare Met. 2008;32(5):614.

    CAS  Google Scholar 

  5. Tu JP, Rong W, Guo SY, Yang YZ. Dry sliding wear behavior of in situ Cu-TiB2 nanocomposites against medium carbon steel. Wear. 2003;255(7):832.

    Article  CAS  Google Scholar 

  6. Hashempour M, Razavizadeh H, Rezaie H. Investigation on wear mechanism of thermochemically fabricated W-Cu composites. Wear. 2010;269(5):405.

    Article  CAS  Google Scholar 

  7. Wang MJ, Zhang LY, Liu XY, Gan CL. Preparation and high-temperature property of WC/Cu composite. J Mater Sci Eng. 2003;21(4):528.

    Google Scholar 

  8. Deshpande PK, Li JH, Lin RY. Infrared processed Cu composites reinforced with WC particles. Mater Sci Eng A. 2006;429(1):58.

    Article  Google Scholar 

  9. Kennedy AR, Wood JD, Weager BM. The wetting and spontaneous infiltration of ceramics by molten copper. Mater Sci. 2000;35(12):2909.

    Article  CAS  Google Scholar 

  10. Deshpande PK, Lin RY. Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Mater Sci Eng, A. 2006;418(1):137.

    Article  Google Scholar 

  11. Yusoff M, Othman R, Hussain Z. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization. Mater Des. 2011;32(6):3293.

    Article  CAS  Google Scholar 

  12. Hong E, Kaplin B, You T, Suh MS, Kim YS, Choe H. Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear. 2011;270(9):591.

    Article  CAS  Google Scholar 

  13. Chen WG, Hu KW, Luo QW. Study on high current WC/Cu slip electrical contact materials. High Volt Appar. 2008;44(1):29.

    CAS  Google Scholar 

  14. Xiao JK, Zhang L, Zhou KC, Wang XP. Micro-scratch behavior of copper–graphite composites. Tribol Int. 2013;57(4):38.

    Article  CAS  Google Scholar 

  15. Friedrich K, Sue HJ, Liu P, Almajid AA. Scratch resistance of high performance polymers. Tribol Int. 2011;44(9):1032.

    Article  CAS  Google Scholar 

  16. Liu Z, Sun J, Shen W. Study of plowing and friction at the surfaces of plastic deformed metals. Tribol Int. 2002;35(8):511.

    Article  CAS  Google Scholar 

  17. Gee MG. Low load multiple scratch tests of ceramics and hard metals. Wear. 2001;250(1):264.

    Article  Google Scholar 

  18. Futami T, Ohora M, Muto H, Sakai M. Contact/scratch-induced surface deformation and damage of copper–graphite particulate composites. Carbon. 2009;47(11):2742.

    Article  CAS  Google Scholar 

  19. Bakshi SR, Lahiri D, Patel RR, Agarwal A. Nano-scratch behavior of carbon nanotube reinforced aluminum coatings. Thin Solid Films. 2010;518(6):1703.

    Article  CAS  Google Scholar 

  20. Venkataraman B, Sundararajan G. The sliding wear behaviour of Al-SiC particulate composites-I: macro-behaviour. Acta Mater. 1996;44(2):451.

    Article  CAS  Google Scholar 

  21. Hawk JA, Alman DE, Petrovic JJ. Abrasive wear of Si3N4–MoSi2 composites. Wear. 1997;203(96):247.

    Article  Google Scholar 

  22. Zum-Gahr KH, Eldis GT. Abrasive wear of white cast irons. Wear. 1980;64(1):175.

    Article  Google Scholar 

  23. Özgur BM, Onur C, Sinmazcelik T, Gunay V, Zeren M. Instrumented indentation and scratch testing evaluation of tribological properties of tin-based bearing materials. Mater Des. 2010;31(6):2707.

    Article  Google Scholar 

  24. Xie Y, Williams JA. The prediction of friction and wear when a soft surface slides against a harder rough surface. Wear. 1996;196(1):21.

    Article  CAS  Google Scholar 

  25. Wredenberg F, Larsson PL. Scratch testing of metals and polymers: experiments and numerics. Wear. 2009;266(1):76.

    Article  CAS  Google Scholar 

  26. Sinha SK, Reddy SU, Gupt M. Scratch hardness and mechanical property correlation for Mg/SiC and Mg/SiC/Ti metal–matrix composites. Tribol Int. 2006;39(2):184.

    Article  CAS  Google Scholar 

  27. Colaco R, Vilar R. A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear. 2003;254(7):625.

    Article  CAS  Google Scholar 

  28. Sahin Y, Acilar M. Production and properties of SiCp-reinforced aluminium alloy composites. Compos A Appl Sci Manuf. 2003;34(8):709.

    Article  Google Scholar 

  29. Tiong SC, Lau KC. Properties and abrasive wear of TiB2/Al-4 %Cu composites produced by hot isostatic pressing. Compos Sci Technol. 1999;59(13):2005.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21175157 and 21375151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, KC., Pei, HL., Xiao, JK. et al. Micro-scratch behavior of WC particle-reinforced copper matrix composites. Rare Met. 41, 2337–2342 (2022). https://doi.org/10.1007/s12598-015-0586-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0586-2

Keywords

Navigation