Skip to main content
Log in

Skin effect of WC–8 wt% Co alloy by microwave sintering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To investigate the microwave effect on the WC–Co alloys, WC–8 wt% Co alloy was fabricated by microwave sintering (MWS) in this paper. The results show that decarburization layer forms on the surface of the microwave-sintered samples. WC grain coarsening in the core area is strongly suppressed by the decarburization effect. In addition, the microstructure of the MWS-fabricated alloy was compared to that of the alloy sintered by vacuum sintering (VS). Microstructural investigations by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) show that more tungsten (29.50 wt%) is dissolved in the cobalt binder phase in microwave-sintered alloy than that in the vacuum-sintered samples. Finally, the formation mechanism of the surface layer by skin effect was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu X, Guo ZM, Wang HB, Song XY. Mechanical properties of WC–Co coatings with different decarburization levels. Rare Met. 2014;33(3):313.

    Article  CAS  Google Scholar 

  2. Shon IJ, Kim BR, Doh JM, Yoon JK, Woo KD. Properties and rapid consolidation of ultra-hard tungsten carbide. J Alloys Compd. 2010;489(1):L4.

    Article  CAS  Google Scholar 

  3. Fang ZZ, Wang X, Ryu T, Hwang KS, Sohn HY. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide: a review. Int J Refract Metal Hard Mater. 2009;27(2):288.

    Article  CAS  Google Scholar 

  4. Zhao S, Song X, Wang M, Wei C, Zhang J, Liu X. Matching of particle sizes of WC/Co powders and spark plasma sintering densification. Acta Metall Sin. 2009;45(4):497.

    Google Scholar 

  5. Chaim R, Levin M, Shlayer A, Estournes C. Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv Appl Ceram. 2008;107(3):159.

    Article  CAS  Google Scholar 

  6. Luo JM, Xu JL, Zhong ZC. Microstructure and properties of Y2O3-doped steel-cemented WC prepared by microwave sintering. Rare Metels. 2013;32(5):496.

    Article  CAS  Google Scholar 

  7. Bao R, Yi J. Densification and alloying of microwave sintering WC–8 wt% Co composites. Int J Refract Metal Hard Mater. 2014;43:269.

    Article  CAS  Google Scholar 

  8. Roy R, Agarwal D, Cheng J, Gedevanishvili S. Full sintering of powdered-metal bodies in a microwave field. Nature. 1999;399(6737):668.

    Article  CAS  Google Scholar 

  9. Luo SD, Yan M, Schaffer GB, Qian M. Sintering of titanium in vacuum by microwave radiation. Metall Mater Trans A Phys Metall Mater Sci. 2011;42A(8):2466.

    Article  Google Scholar 

  10. Demirskyi D, Agrawal D, Ragulya A. Neck growth kinetics during microwave sintering of copper. Scripta Mater. 2010;62(8):552.

    Article  CAS  Google Scholar 

  11. Annamalai R, Upadhyaya A, Agrawal D. An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys. Bull Mater Sci. 2013;36(3):447.

    Article  CAS  Google Scholar 

  12. Zhou C, Yi J, Luo S. Sintering high tungsten content W–Ni–Fe heavy alloys by microwave radiation. Metall Mater Trans A. 2014;45(1):455.

    Article  CAS  Google Scholar 

  13. Demirskyi D, Ragulya A, Agrawal D. Initial stage sintering of binderless tungsten carbide powder under microwave radiation. Ceram Int. 2011;37(2):505.

    Article  CAS  Google Scholar 

  14. Bao R, Yi J, Zhang H. A research on WC–8 Co preparation by microwave sintering. Int J Refract Metal Hard Mater. 2012;32:16.

    Article  CAS  Google Scholar 

  15. Das S, Mukhopadhyay AK, Datta S. Prospects of microwave processing: an overview. Bull Mater Sci. 2009;32(1):1.

    Article  CAS  Google Scholar 

  16. Bonache V, Salvador MD, Rocha VG, Borrell A. Microstructural control of ultrafine and nanocrystalline WC–12Co–VC/Cr3C2 mixture by spark plasma sintering. Ceram Int. 2011;37(3):1139.

    Article  CAS  Google Scholar 

  17. Breval E, Cheng J, Agrawal D, Gigl P, Dennis M, Roy R, Papworth AJ. Comparison between microwave and conventional sintering of WC/Co composites. Mater Sci Eng A. 2005;391(1–2):285.

    Article  Google Scholar 

  18. Sunil BR, Sivaprahasam D, Subasri R. Microwave sintering of nanocrystalline WC–12Co: challenges and perspectives. Int J Refract Metal Hard Mater. 2010;28(2):180.

    Article  CAS  Google Scholar 

  19. Konyashin I, Hlawatschek S, Ries B, Lachmann F, Dorn F, Sologubenko A, Weirich T. On the mechanism of WC coarsening in WC–Co hardmetals with various carbon contents. Int J Refract Metal Hard Mater. 2009;27(2):234.

    Article  CAS  Google Scholar 

  20. German RM. Liquid Phase Sintering. New York: Plenum Press; 1986. 168.

    Google Scholar 

  21. Bykov YV, Rybakov KI, Semenov VE. High-temperature microwave processing of materials. J Phys D Appl Phys. 2001;34(13):R55.

    Article  CAS  Google Scholar 

  22. Ro K, Dreyer K, Gerdes T, Willert-Porada M. Microwave sintering of hardmetals. Int J Refract Metal Hard Mater. 1998;16(4):409.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51274107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, R., Yi, JH., Peng, YD. et al. Skin effect of WC–8 wt% Co alloy by microwave sintering. Rare Met. 41, 1364–1368 (2022). https://doi.org/10.1007/s12598-015-0488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0488-3

Keywords

Navigation