Skip to main content
Log in

Synthesis and surface modification of cobalt nanoparticles and electromagnetic property of Co/PPy nanocomposites

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, cobalt nanoparticles were synthesized by chemical reduction procedure. After the hydrophilic functionalization, Co/polypyrrole (PPy) nanocomposites were prepared by in situ polymerization of pyrrole in aqueous dispersion of Co nanoparticles. The Co/PPy nanocomposites show good electromagnetic properties with both magnetic loss and dielectric loss to electromagnetic wave. The electromagnetic wave absorbing bandwidth (reflection loss <−10 dB) for Co/PPy (20 wt%) is above 5.5 GHz at a thickness of 2 mm, and with a maximum reflection loss (around −20.02 dB) at 14.77 GHz. This magnetic nanoparticles/conducting polymer nanocomposites are great potential candidates for electromagnetic wave absorbent, because of their wide-absorbing frequency, strong absorption, good compatibility, low density, and controllable absorbing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Puntes VF, Krishnan KM, Alivisatos AP. Colloidal nanocrystal shape and size control: the case of cobalt. Science. 2001;291(5511):2115.

    Article  Google Scholar 

  2. Puntes VF, Gorostiza P, Aruguete DM, Bastus NG, Alivisatos AP. Collective behavior in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat Mater. 2004;3(4):263.

    Article  Google Scholar 

  3. Yang C, Hou YL. Advance in the chemical synthesis and magnetic properties of nanostructured rare-earth-based permanent magnets. Rare Met. 2013;32(2):105.

    Article  Google Scholar 

  4. Bigot JY, Kesserwan H, Halte V, Ersen O, Moldovan M, Kim TH, Jang JT, Cheon J. Magnetic properties of annealed core–shell CoPt nanoparticles. Nano Lett. 2012;12(3):1189.

    Article  Google Scholar 

  5. Wang ZJ, Wu LN, Zhou JG, Cai W, Shen BZ, Jiang ZH. Magnetite nanocrystals on multiwalled carbon nanotubes as a synergistic microwave absorber. J Phys Chem C. 2013;117(10):5446.

    Article  Google Scholar 

  6. Shen B, Zhai WT, Tao MM, Ling JQ, Zheng WG. Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces. 2013;5(21):11383.

    Article  Google Scholar 

  7. Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Hur SH, Choi WM, Kimar M, Dhawan SK, Kong BS, Chung JS. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale. 2013;5(6):2411.

    Article  Google Scholar 

  8. Yan LG, Wang JB, Han XH, Ren Y, Liu QF, Li FS. Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology. 2010;21(9):095708.

    Article  Google Scholar 

  9. Duan YP, Liu Z, Zhang YH, Wen M. A theoretical study of the dielectric and magnetic responses of Fe-doped a-MnO2 based on quantum mechanical calculations. J Mater Chem C. 2013;1(10):1990.

    Article  Google Scholar 

  10. Wang C, Han X, Xu P. Zhang XL, Du YC, Hu SR, Wang JY, Wang XH. The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett. 2011;98(7):072906.

    Article  Google Scholar 

  11. Kim ST, Kim SS. Electroless plating of Co thin film on hollow glass microspheres and the effect of film thickness on microwave absorbance. Magn IEEE Trans Magn. 2012;48(11):3494.

    Article  Google Scholar 

  12. Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41(7):2656.

    Article  Google Scholar 

  13. Zhang J, Yuan ZF, Wang Y, Chen WH, Luo GF, Cheng SX, Zhuo RX, Zhang XZ. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J Am Chem Soc. 2013;135(13):5068.

    Article  Google Scholar 

  14. Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 2010;10(9):3223.

    Article  Google Scholar 

  15. Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev. 2012;41(7):2575.

    Article  Google Scholar 

  16. Ho D, Sun XL, Sun SH. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res. 2011;44(10):875.

    Article  Google Scholar 

  17. De M, Ghosh PS, Rotello VM. Applications of nanoparticles in biology. Adv Mater. 2008;20(22):4225.

    Article  Google Scholar 

  18. Benoit PP, Matthias P, Pascal M, Cedric L, Sylvie B-C. Tunable magnetic properties of nanoparticle two-dimensional assemblies addressed by mixed self-assembled monolayers. Langmuir. 2011;27(10):6235.

    Article  Google Scholar 

  19. Michael AZ, Michael LV, Judy SR, Martin S, Timothy GSP. Structural and magnetic properties of cobalt nanoparticles encased in siliceous shells. Chem Mater. 2007;19(26):6597.

    Article  Google Scholar 

  20. Song YJ, Modrow H, Henry LL, Saw CK, Doomes EE, Palshin V, Hormes J, Kumar CSSR. Microfluidic synthesis of cobalt nanoparticles. Chem Mater. 2006;18(12):2817.

    Article  Google Scholar 

  21. Kasture M, Singh S, Patel P, Joy PA, Prabhune AA, Ramana CV, Prasad BLV. Multiutility sophorolipids as nanoparticle capping agents: synthesis of stable and water dispersible Co nanoparticles. Langmuir. 2007;23(23):11409.

    Article  Google Scholar 

  22. Chen SY, Yu P, Zhang JJ, Li YL, Xie RS, Zhu JG, Xiao DQ, Jiang M. Preparation and optical property of Co2+: CdS nanocrystals, In: Proceedings of the 18th IEEE International Symposium on the Applications of Ferroelectrics. Bethlehem, 2009.1.

  23. Wu NQ, Fu L, Su M, Aslam M, Wong KC, Dravid VP. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 2004;4(2):383.

    Article  Google Scholar 

  24. Sun SH, Murray CB. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J Appl Phys. 1999;85(8):4325.

    Article  Google Scholar 

  25. Bean C, Livingston J. Superparamagnetism. J Appl Phys. 1959;30(4):120S.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51101013 and 51371055), and the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-12-038A and FRF-TP-14-012A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Hua Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HC., Yan, ZR., Deng, L. et al. Synthesis and surface modification of cobalt nanoparticles and electromagnetic property of Co/PPy nanocomposites. Rare Met. 34, 223–228 (2015). https://doi.org/10.1007/s12598-014-0438-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0438-5

Keywords

Navigation