Skip to main content
Log in

Preparation and optoelectronic properties of a-IGZO thin films deposited by RF magnetron sputtering at different working pressures

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Transparent oxide semiconductor, a-IGZO, thin films were prepared by high-vacuum RF magnetron sputtering at different working pressures. The effect of working pressure on crystal structure, surface morphology, and electrical and optical properties of the films was studied. The highest hall mobility of 17.45 cm2·V−1·s−1 is obtained at 0.3 Pa with annealing at 200 °C, while the highest carrier concentration of 2.32 × 1020 cm−3 and the lowest resistivity of 0.001568 Ω·cm are obtained at 0.45 Pa with annealing. The highest transmittance of 90.9 % is obtained at 0.9 Pa with annealing treatment. A “blue shift” of UV absorption edge is observed with the increase of working pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klauk H. Organic thin-film transistors for flexible displays and circuits. In: Proceedings of the 70th Device Research Conference, Pennsylvania, 2012. 237.

  2. Wang BX, Kong WM, Ling AP, Bao Y, Zhang J, She JQ. Performance of TiC/a-C: H thin film. Chin J Rare Met. 2013;37(3):378.

    Google Scholar 

  3. Lee SS, Mativetsky JM, Loth MA, Anthony JE, Loo YL. Quantifying resistances across nanoscale low-and high-angle interspherulite boundaries in solution-processed organic semiconductor shin films. ACS Nano. 2012;6(11):9879.

    Article  Google Scholar 

  4. Wood R, Bruce I, Moon CB, Kim WY, Mascher P. Modeling of spiking analog neural circuits using organic semiconductor thin film transistors with silicon oxide nitride semiconductor gates. Org Electron. 2012;13(12):3254.

    Article  Google Scholar 

  5. Chan I, Moradi M, Sazonov A, Nathan A. 150 °C amorphous silicon thin film transistors with low-stress nitride on transparent plastic. J Disp Technol. 2011;7(1):36.

    Article  Google Scholar 

  6. Tanabe A, Hanmura M, Katoh T, Oomori H, Honma A, Suzuki T. Solution-processed photosensitive passivation layer for an a-Si TFT for LCDs with a low dielectric constant. IEICE Trans Electron. 2012;95(11):1737.

    Article  Google Scholar 

  7. Bai HL, He SM, Xu TS, Liu GL, Yan SS, Zhu DP, Dai ZK, Yang FF, Dai YY, Chen YX, Mei LM. Ferromagnetism, variable range hopping and anomalous Hall effect in epitaxial Co:ZnO thin film. Chin Phys B. 2012;21(10):107201.

    Article  Google Scholar 

  8. Sun J, Dai Q, Liu FJ, Huang HQ, Li ZJ, Zhang XQ, Wang YS. The ultraviolet photoconductive detector based on Al-doped ZnO thin film with fast response. Sci China-Phys Mech Astron. 2011;54(1):102.

    Article  Google Scholar 

  9. Liu X, Xue JS, Jia Y, Zhou WF, Xiao J, Cao ZF. The recent research progress of amorphous indium gallium zinc oxide thin film transistors. Adv Disp. 2010;117:28.

    Google Scholar 

  10. Park SHK, Hwang CS, Ryu M, Yang S, Byun C, Shin J, Lee J, Lee K, Oh MK, Im S. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel. Adv Mater. 2009;21(6):678.

    Article  Google Scholar 

  11. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature. 2004;432(7016):488.

    Article  Google Scholar 

  12. Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn J Appl Phys. 2006;45(5B):4303.

    Article  Google Scholar 

  13. Kikuchi Y, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H. Device characteristics improvement of a-In-Ga-Zn-O TFTs by low-temperature annealing. Thin Solid Films. 2010;518(11):3017.

    Article  Google Scholar 

  14. Huh JY, Seo SB, Park HS, Jeon JH, Choe HH, Lee KW, Seo JH, Ryu MK, Park SHK, Hwang CS. Light and bias stability of a-IGZO TFT fabricated by rf magnetron sputtering. Curr Appl Phys. 2011;11(5):S49.

    Article  Google Scholar 

  15. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H. Low-temperature high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nat Mater. 2010;10(1):45.

    Article  Google Scholar 

  16. Lee YS, Dai ZM, Lin CI, Lin HC. Relationships between the crystalline phase of an IGZO target and electrical properties of a-IGZO channel film. Ceram Int. 2012;38(1):S595.

    Article  Google Scholar 

  17. Lo CC, Hsieh TE. Preparation of IGZO sputtering target and its applications to thin-film transistor devices. Ceram Int. 2012;38(5):3977.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51571010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Xin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, RX., Xiao, YQ., Li, SN. et al. Preparation and optoelectronic properties of a-IGZO thin films deposited by RF magnetron sputtering at different working pressures. Rare Met. 37, 599–603 (2018). https://doi.org/10.1007/s12598-014-0314-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0314-3

Keywords

Navigation