Skip to main content
Log in

Progress in application of rare metals in superalloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Rare metals play an important role in development of superalloys. Over the last two decades, the application of the rare metals in superalloys has achieved progress significantly. They present multi-beneficial effects for strengthening the matrix and the γ′ phase, increasing the lattice misfit, cleaning the grain boundary, improving the carbides and eutectics, refining the grain, stabilizing the oxidation film, etc., so that the elevated temperature rupture life and elevated temperature oxidation resistance are improved significantly, leading to a broad application in the superalloys. In order to meet the higher demand for better superalloys in the future, more intensive research is necessary on the effects of the rare metals on the superalloy, and especially on the combination effect of various rare metals and mutual influence among them. Utilization of the computational materials science and combinatorial high throughput experiment will be of importance in application of rare metals in superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Berthod P, Michon S, Di Martino J, Mathieu S, Noël S, Podor R, Rapin C. Thermodynamic calculations for studying high temperature oxidation of superalloys. Calphad. 2003;27(3):279.

    Article  Google Scholar 

  2. Berthod P, Aranda L, Vébert C, Michon S. Experimental and thermodynamic study of the high temperature microstructure of tantalum containing nickel-based alloys. Calphad. 2004;28(2):1596.

    Article  Google Scholar 

  3. Wang YQ, Wei YH, Yang NS. Influence of lanthanum on stress rupture property of Ni–20Cr–20Co–18W superalloy. J Iron Steel Res. 1985;5:69.

    Google Scholar 

  4. Chen SF, Ma HP, Ju Q, Zhao GP. Effect of rare earth element lanthanum on oxidation behavior of GH230 at 1000 °C in air. J Iron Steel Res. 2009;21(11):45.

    Google Scholar 

  5. Lin QY. Segregation and action of lanthanum in NiCrCoW alloy. J Chin Rare Earth Soc. 1998;16(2):158.

    Google Scholar 

  6. Zeng BS, Wu SQ, Zhang SL. Role and distribution of La in Co-base superalloy GH188. J Chin Rare Earth Soc. 1986;4:45.

    Google Scholar 

  7. Pan XL, Yu HY, Tu GF, Sun WR, Hu ZQ. Effect of rare earth metals on solidification behaviour in nickel based superalloy. Mater Sci Technol. 2012;28:560.

    Article  Google Scholar 

  8. Chen SF, Ma HP, Ju Q, Zhao GP. Effect of lanthanum content on the microstructure and property of GH230 alloy. China Metall. 2009;19(10):13.

    Google Scholar 

  9. Meng ZB, Zeng BS, Wang ZG. Study on lanthanide precipitate type and magnesium segregation to gra in boundary in cobalt-base superalloy GH188. J Iron Steel Res. 1999;11(3):30.

    Google Scholar 

  10. Guo JT, Zhou LZ, Yuan C, Hou JS, Qin XZ. Microstructure and properties of several originally invented and unique superalloys in China. Chin J Nonferrous Met. 2011;21(2):237.

    Google Scholar 

  11. Zheng L, Xiao CB, Zhang GQ, Yuan H, Han B. Tang Dingzhong, Investigation of the master alloy cleanliness of high Cr content cast Ni-base superalloy K4648. J Mater Eng. 2012;3:1.

    Article  Google Scholar 

  12. Li XB. Effect of cerium on solidification segregation of sulfur in nickel-based C-4 alloy. Foundry Technol. 2003;24:434.

    Google Scholar 

  13. Anliker DM, Newkirk JB. The effects of cerium on the microstructure of INCO 901 superalloy. Metall Trans A. 1976;7A:1711.

    Article  Google Scholar 

  14. Cui C, Han G, Sun X. Effect of Ce addition on the microstructures and mechanical properties of a Ni–Co-based superalloy. Adv Mater Res. 2012;415–417:2062.

    Google Scholar 

  15. Yangshan S, Zhengjun Y, Zhonghua Z, Haibo H. Mechanical properties of Fe3Al-based alloys with cerium addition. Scr Metall Mater. 1995;33(5):811.

    Article  Google Scholar 

  16. Guo JT, Ren WL, Zhou JY. Effect of rare earth elements on intermetallics (aluminides). Mater Eng. 2002;1:36.

    Google Scholar 

  17. Li H, Guo JT, Sun C, Wang SH, Tan MH. Effect of yttrium and cerium on compression properties of Ni3Al-based alloy. J Chin Rare Earth Soc. 1991;9(3):243.

    Google Scholar 

  18. Li FM, Qian XY, Li JG, Wang LA, Zhao J. Application and development trend of rare earth in aviation industry. Mater Eng. 1998;6:10.

    Google Scholar 

  19. Zhang GY, Tan GN, Zhang H, Li HQ. Effect of different content of Ce on oxidation resistance of NiAl–28Cr–5.5Mo–0.5H alloy. Chin J Rare Met. 2009;33(3):333.

    Google Scholar 

  20. Zhang SZ, Guo JT, Ren WL, Zhou WL. Effects of rare earth elements on high temperature oxidation resistance of NiAl/CrMo(Hf) alloy. J Chin Soc Corros Prot. 2005;25(12):110.

    Google Scholar 

  21. Shi ST, Huang YW, Han Y. Influence of rare earth metals Y, Ce and La on the high temperature sulfidation of Fe–25Cr–40Ni superalloy. Key Eng Mater. 1991;20–28(2):1617.

    Article  Google Scholar 

  22. Fox AG, Tabbernor MA. The bonding charge density of β′NiAl. Acta Metall Mater. 1991;39(4):669.

    Article  Google Scholar 

  23. Whittenberger JD, Raj SV, Locci I, Salem J. Elevated temperature strength and room-temperature toughness of directionally solidified Ni–33Al–33Cr–1Mo. Metall Mater Trans A. 2002;33(5):1385.

    Article  Google Scholar 

  24. Johnson DR, Chen XF, Oliver BF, Noebe RD, Whittenberger JD. Processing and mechanical properties of in situ composites from the NiAlCr and the NiAl (Cr, Mo) eutectic systems. Intermetallics. 1995;3(2):99.

    Article  Google Scholar 

  25. Kumar KS, Mannan SK, Viswanadham RK. Fracture toughness of NiAl and NiAl-based composites. Acta Metall Mater. 1992;40(6):1201.

    Article  Google Scholar 

  26. Cui CY, Guo JT, Qi YH, Ye HQ. High temperature embrittlement of NiAl alloy induced by hot isostatic pressing (HIPing) and aging. Scr Mater. 2001;44(10):2437.

    Article  Google Scholar 

  27. Guo JT, Sheng LY, Tian YX, Zhou LZ, Ye HQ. Effect of Ho on the microstructure and compressive properties of NiAl-based eutectic alloy. Mater Lett. 2008;62(23):3910.

    Article  Google Scholar 

  28. Li H, Guo J, Huai K, Ye H. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy. J Cryst Growth. 2006;290(1):258.

    Article  Google Scholar 

  29. Sheng LY, Guo JT, Tian YX, Zhou LZ, Ye HQ. Microstructure and mechanical properties of rapidly solidified NiAl–Cr (Mo) eutectic alloy doped with trace Dy. J Alloy Compd. 2009;475(1–2):730.

    Article  Google Scholar 

  30. Xie Y, Guo JT, Liang YC, Zhou LZ, Ye HQ. Modification of NiAl–Cr(Mo)–0.15Hf alloy by Sc addition. Intermetallics. 2009;17(6):400.

    Article  Google Scholar 

  31. Sun B, Che X, Yang G, Zhou Y, Lin D. The ductility of La-doped rapidly solidified NiAl. Scr Metall Mater. 1995;33(7):1145.

    Article  Google Scholar 

  32. Yang JM, Jeng SM, Bain K, Amato RA. Microstructure and mechanical behavior of in situ directional solidified NiAl/Cr (Mo) eutectic composite. Acta Mater. 1997;45(1):295.

    Article  Google Scholar 

  33. Weili R, Jianting G, Jiyang Z. Influences of yttrium on microstructure and mechanical properties of NiAl–28Cr–5.5Mo–0.5Hf alloy. J Rare Earths. 2002;20(4):295.

    Google Scholar 

  34. Ren WL, Guo JT, Li GS, Zhou JY. Effect of Nd on microstructure and mechanical properties of NiAl-based intermetallic alloy. Mater Lett. 2003;57(8):1374.

    Article  Google Scholar 

  35. Ren WL, Guo JT, Li GS, Zhou JY. The role of Nd solid-solution and grain-boundary segregation in binary NiAl intermetallic compound. J Mater Sci Technol. 2004;20:163.

    Google Scholar 

  36. Liang YC, Guo JT, Zhou LZ, Xie Y, Hu ZQ. Effect of Gd on the microstructures and properties of NiAl intermetallics. Aci Metall Sin. 2008;44:535.

    Google Scholar 

  37. Han YF, Xiao CB. Effect of yttrium and silicon on microstructure and properties of Ni3AI base alloy IC6. Aci Metall Sin. 1998;34(11):1153.

    Google Scholar 

  38. Wang RM, Li CZ, Yan MG. Micro-mechanism study on the properties affects in a low expansion superalloy GH907 with addition of rare elements. Mater Eng. 2001;7:25.

    Article  Google Scholar 

  39. Zhou PJ, Yu JJ, Sun XF, Guan HR, He XM, Hu ZQ. Influence of Y on stress rupture property of a Ni-based superalloy. Mater Sci Eng A. 2012;551:236.

    Article  Google Scholar 

  40. Peng ZJ, Li ZJ, Hou JS, Man YL, Guo JT, Zhou LZ. Effect of yttrium and cerium on microstructure and mechanical properties of revert nickel-base superalloy K444 with low hafnium content. J Chin Rare Earth Soc. 2009;27(6):822.

    Google Scholar 

  41. Wang RM, Song YG, Han YF. Effect of rare earth on the microstructures and properties of a low expansion superalloy. J Alloy Compd. 2000;311(1):60.

    Article  Google Scholar 

  42. Guo JT, Huai KW, Gao Q, Ren WL, Li GS. Effects of rare earth elements on the microstructure and mechanical properties of NiAl-based eutectic alloy. Intermetallics. 2007;15(5–6):727.

    Article  Google Scholar 

  43. Xiao CB, Han YF. Effect of silicon on microstructure and stress rupture properties at 1100 °C of yttrium modified Ni–Al–Mo–B alloy IC6. J Mater Sci. 2001;36(4):1027.

    Article  Google Scholar 

  44. Zhou PJ, Yu JJ, Sun XF, Guan HR, Hu ZQ. Role of yttrium in the microstructure and mechanical properties of a boron-modified nickel-based superalloy. Scr Mater. 2007;57:643.

    Article  Google Scholar 

  45. Ren WL. Microstructure and mechanical properties of NiAl-based eutectic alloys and alloying behavior of rare earths. Dalian: Dalian University of Technology; 2002, 1.

    Google Scholar 

  46. Zhou YJ, Zhang GY, Wang ZY, Yang Z. Study on influence of rare earth elements on properties of Ni-base superalloys through electron theory. Rare Metal Mater Eng. 2007;36(12):2160.

    Google Scholar 

  47. Yu P, Wang YQ. Oxidation behavior of K38G superalloy with 0.1 mass% yttrium at 1000 °C in air. Corros Sci Prot Technol. 2007;19(3):189.

    Google Scholar 

  48. Xiao CB, Han YF. Effect of yttrium on the microstructure and high temperature oxidation resistance of Ni3Al base alloyIC6. J Mater Eng. 1998;6:22.

    Google Scholar 

  49. Wang SH, Guo JT, Li H, Sun C, Tan MH, Lai WH. On the YNi5 phase and its effect upon properties of Ni3Al alloy. Metall Sin. 1991;27(6):A433.

    Google Scholar 

  50. Yu P, Wang YQ, Wang W. Effect of reactive element yttrium on oxidation behavior of K38G superalloy at 800 °C in air. Corros Sci Prot Technol. 2006;18(3):183.

    Google Scholar 

  51. Xiao CB, Han YF. Interface behavior of sulfur and yttrium in the yttrium modified Ni3Al-base alloy IC6 during high temperature oxidation process. J Chin Rare Earths Soc. 1999;17(4):377.

    Google Scholar 

  52. Erickson GL. The development and application of CMSX-10. Superalloys. 1996;1996:35.

    Google Scholar 

  53. Li JR, Tang DZ, Chen RZ. Effect of rhenium (Re) in single crystal superalloys. J Mater Eng. 1997;8:3.

    Google Scholar 

  54. Sha W, Cerezo A, Smith G. Phase chemistry and precipitation reactions in maraging steels: part III. model alloys. Metall Trans A. 1997;16:1985.

    Google Scholar 

  55. Erickson GL. The development of CMSX-10, a third generation SX casting superalloy. In: Proceedings of the second pacific rim international conference on advanced materials and processing (PRCIM-2). Kyongju, 1995, 22.

  56. Fullagar KPL, Harris K, Erickson GL, Broomfield RW, Hulands M, Sikkenga SL. Aero engine test experience with CMSX-4 alloy single crystal turbine blades. J Eng Gas Turbines Power. 1996;118(2):380.

    Article  Google Scholar 

  57. Darolia RDF, Lahrman RD. Field, formation of topologically close packed phases in nickel-base single crystal superalloys. In: The Sixth International Symposium on Superalloys–Superalloys 1988. Pennsylvania: Champion, 1988. 255.

  58. Walston W, Schaeffer J, Murphy W. A new type of microstructural instability in superalloys-SRZ. In: The Eighth International Symposium on Superalloys–Superalloys 1996. Pennsylvania: Champion, 1996. 9.

  59. Pollock TM, Murphy WH, Goldman EH, Uram DL, Tu JS. Grain defect formation during directional solidification of nickel base single crystals. In: The Seventh International Symposium on Superalloys–Superalloys 1992. Pennsylvania: Champion, 1992. 125.

  60. Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys. Scr Mater. 2006;54:1679.

    Article  Google Scholar 

  61. Yeh AC, Tin S. Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys. Metall Mater Trans A. 2006;37(9):2621.

    Article  Google Scholar 

  62. Sato A, Harada H, Yokokawa T, Murakumo T, Koizumi Y, Kobayashi T, Imai H. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys. Scr Mater. 2006;54(9):1679.

    Article  Google Scholar 

  63. Hobbs RA, Zhang L, Rae CMF, Tin S. The effect of ruthenium on the intermediate to high temperature creep response of high refractory content single crystal nickel-base superalloys. Mater Sci Eng A. 2008;489(1–2):65.

    Article  Google Scholar 

  64. Feng Q, Nandy TK, Pollock TM. Observation of a Ru-rich Heusler phase in a multicomponent Ni-base superalloy. Scr Mater. 2004;50(6):849.

    Article  Google Scholar 

  65. Yeh AC, Tin S. Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scr Mater. 2005;52(6):519.

    Article  Google Scholar 

  66. Caldwell EC, Fela FJG, Fuchs E. Segregation of elements in high refractory content single crystal ni-based superalloy. In: The 10th International Symposium on Superalloys–Superalloys 2004. Pennsylvania: Champion, 2004. 811.

  67. Hobbs RA, Tin S, Rae CMF, Hinton BRW, Aitken HCJ. Solidification characteristic of advanced Ni-base single crystal superalloys. In: The 10th International Symposium on Superalloys–Superalloys 2004. Pennsylvania: Champion, 2004, 819.

  68. Kearsey, R.M., J.C. Beddoes, K.M. Jaansalu, W.T. Thompson, A. P., The effects of Re, W and Ru on microsegregation behaviour in single crystal superalloy systems. In: The 10th International Symposium on Superalloys -Superalloys 2004, Champion, Pennsylvania, 2004: 801.

  69. Koizumi, Y., T. Kobayashi, J. Zhang, T. Yokokawa, H. Harada, Y. Aoki, A. M. Development of a Next-Generation Ni-base Single Crystal Superalloy. In: Proceedings of the International Gas Turbine Congress. Tokyo. 2003. 1.

  70. Zhang JX, Murakumo T, Koizumi Y, Kobayashi T, Harada H, Masaki S Jr. Interfacial dislocation networks strengthening a fourth-generation single-crystal TMS-138 superalloy. Metall Mater Trans A. 2002;33(12):3741.

    Article  Google Scholar 

  71. Carroll LJ, Feng Q, Mansfield JF, Pollock TM. High refractory, low misfit ru-containing single-crystal superalloys. Metall Mater Trans A. 2006;37(10):2927.

    Article  Google Scholar 

  72. Ofori AP, Rossouw CJ, Humphreys CJ. Determining the site occupancy of Ru in the L12 phase of a Ni-base superalloy using ALCHEMI. Acta Mater. 2005;53(1):97.

    Article  Google Scholar 

  73. Carroll LJ, Feng Q, Mansfield JF, Pollock TM. Elemental partitioning in Ru-containing nickel-base single crystal superalloys. Mater Sci Eng A. 2007;457(1–2):292.

    Article  Google Scholar 

  74. Reed RC, Yeh AC, Tin S, Babu SS, Miller MK. Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scr Mater. 2004;51:327.

    Article  Google Scholar 

  75. Zhu QX, Guan H. Effect of niobium on creep property of nickel- based alloy. Phys Exam Test. 2005;23(3):33.

    Google Scholar 

  76. Li HF, Liu ZL, Xiang LX, Zhou LC. Effects of niobium on strengthening of GH871 superalloy. Ordnance Mater Sci Eng. 1998;21(4):21.

    Google Scholar 

  77. Chen GS, Wu BH, Zhou LC, Li YQ. Effect of Nb on strengthening of Fe-base superalloy at medium high temperature. Acta Metall Sin. 1992;28(9):385.

    Google Scholar 

  78. Shi YJ, Du YL, Chen G. Progress in research on high niobium containing TiAl-based alloy. Chin J Rare Met. 2007;31(6):834.

    Google Scholar 

  79. Zhang WJ, Deevi SC, Chen GL. On the origin of superior high strength of Ti–45Al–10Nb alloys. Intermetallics. 2002;10(5):403.

    Article  Google Scholar 

  80. Paul JDH, Appel F, Wagner R. The compression behaviour of niobium alloyed γ-titanium alumindies. Acta Mater. 1998;46(4):1075.

    Article  Google Scholar 

  81. Zhang W, Liu Y, Huang JS, Liu B, He YH. Research progress and prospects for refractory TiAl alloy with high Nb content. Rare Met Lett. 2007;26(8):1.

    Google Scholar 

  82. Zheng YR. The effect of Hf in cast superalloy solidification. Acta Metall Sin. 1986;22:A119.

    Google Scholar 

  83. Zheng YR. Influence of Hf on weld cracking for cast nickel base superalloys. Trans China Weld Inst. 1988;9:162.

    Google Scholar 

  84. Wang LB, Chen RZ, Wang YP. Influence of Hf content of on segregation behavior and mechanical properties of directionally solidified superalloy DZ22. Aeronaut Mater. 1989;9(2):1.

    Google Scholar 

  85. Zheng YR, Cai YL, Ruan ZC, Ma SW. Investigation of effect mechanism of Hf and Zr in high temperature materials. J Aeronaut Mater. 2006;26(3):25.

    Google Scholar 

  86. Zhen BL, Zhang SJ. The phase composition and the rules of the phase precipitation in Hf-bearing nickel base superalloys. J Iron Steel Res. 1981;1:65.

    Google Scholar 

  87. Larson JM, Volin TE, Larson FG. Effect of hafnium on powder metallurgy astrology. In: Braun JD, Arrowsmith HW, McCall JL, editors. Microstructural science. New York: American Elsevier Pub; 1977. 209.

    Google Scholar 

  88. Miner R. Effects of C and Hf concentration on phase relations and microstructure of a wrought powder-metallurgy superalloy. Metall Trans A. 1977;8(2):259.

    Article  Google Scholar 

  89. Han SB, Zhang YW. Research overview on the effect of Hafnium on PM superalloy. Powder Metall Ind. 2009;19(5):48.

    Google Scholar 

  90. Johna R, Tadeub C, Davidc F, Josephd L, Anthony B. Effect of processing and composition on the structure and properties of P/M EP741NP type alloys. Chin J Aeronaut. 2007;20:97.

    Article  Google Scholar 

  91. Voice W, Hardy M, Rugg D. Powder prospects ‘set for takeoff’ as production methods change. Met Powder Rep. 2005;60(4):8.

    Article  Google Scholar 

  92. Radavich J, Carneiro T, Furrer D, Lemsky J, Banik A. The effect of hafnium, noibium and heat treatment on advanced powder metallurgy superalloys. In: proceedings of the eleventh international symposium on advanced superalloys. Shanghai, 2007, 114.

  93. Zheng L, Gu CQ, Zhang GQ. Effect of Ta addition on microstructure of cast nickel base superalloys containing low level of Cr and high level of W. Rare Metal Mater Eng. 2005;34:194.

    Google Scholar 

  94. Sun YJ, Kang JG, Kong SK. Effect of Al, Ti and Ta on microstructure and properties of Ni-based single crystal superalloy. Spec Cast Nonferrous Alloys. 2008;28:660.

    Google Scholar 

  95. Zheng L. Formation and transformation of α phase in Ta-containing low Cr and high W content cast Ni-base superalloy. Chin J Nonferrous Met. 2005;15:1566.

    Google Scholar 

  96. Wu K, Liu GQ, Hu BF, Wu H, Zhang YW, Tao Y, Liu JT. Carbides in a new type Hf-Ta-containing nickle-based superalloy powder. J Univ Sci Technol Beijing. 2010;32:1464.

    Google Scholar 

  97. Zheng L, Gu CQ, Yu BZ, She L, Tang DZ. High-temperature oxidation behavior of low Cr and high W content cast Ni-base superalloy and effect of Ta alloying. J Aeronaut Mater. 2005;25:1.

    Google Scholar 

  98. Zhang J. Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792. Scr Mater. 2003;48:677.

    Article  Google Scholar 

  99. Zheng L. Formation of eutectic (γ′ + α) and α transformation in Ta-bearing high W content cast Ni-base superalloys. Scr Mater. 2005;53(8):943.

    Article  Google Scholar 

  100. Amouyal Yaron, Mao Zugang, Seidman DN. Effects of tantalum on the partitioning of tungsten between the γ′ and γ phase in nickel-based superalloys: linking experimental and computational approaches. Acta Mater. 2010;58:5898.

    Article  Google Scholar 

  101. Gschneidner K, Ji M, Wang C, Ho K, Russell A, Mudryk Y, Becker A, Larson J. Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics. Acta Mater. 2009;57(19):5876.

    Article  Google Scholar 

  102. Zhang Z, Russell AM, Biner SB, Gschneidner KA Jr, Lo CCH. Fracture toughness of polycrystalline YCu, DyCu, and YAg. Intermetallics. 2005;13(5):559.

    Article  Google Scholar 

  103. Cao GH, Shechtman D, Wu DM, Becker AT, Chumbley LS, Lograsso TA, Russell AM, Gschneidner KA Jr. Determination of slip systems and their relation to the high ductility and fracture toughness of the B2 DyCu intermetallic compound. Acta Mater. 2007;55(11):3765.

    Article  Google Scholar 

  104. Cao GH, Yu Z. Dislocations in the ductile B2 YAg intermetallic compound. J Alloy Compd. 2009;488(1):44.

    Article  Google Scholar 

  105. Cao GH, Yu Z, Russell AM. The deformation behavior of DyCu ductile intermetallic compound under compression. Mater Sci Eng A. 2011;528(24):7173.

    Article  Google Scholar 

Download references

Acknowledgments

The supports from State Basic Research Development Program of China (No. 2010BC100404) and Shanghai Science and Technology Committee are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ming Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, KD., Ren, ZM. & Li, CJ. Progress in application of rare metals in superalloys. Rare Met. 33, 111–126 (2014). https://doi.org/10.1007/s12598-014-0256-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0256-9

Keywords

Navigation