Skip to main content

Advertisement

Log in

Elevated temperature strength and room-temperature toughness of directionally solidified Ni-33Al-33Cr-1Mo

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The eutectic composition Ni-33Al-33Cr-1Mo has been directionally solidified (DS) via a modified Bridgman technique at rates ranging from 7.6 to 508 mm/h to determine if the growth rate affects the mechanical properties. Microstructural examination revealed that all DS rods had grain/cellular microstructures containing alternating plates of NiAl and Cr alloyed with Mo. At slower growth rates (≤12.7 mm/h), the grains had sharp boundaries, while faster growth rates (≥25.4 mm/h) led to cells bounded by intercellular regions. None of the growth conditions resulted in either dendrites or third phases. Compressive testing between 1200 and 1400 K indicated that alloys DS at rates between 25.4 and 254 mm/h possessed the best strengths, while room-temperature toughness exhibited a plateau of about 16 MPa√m for growth rates between 12.7 and 127 mm/h. Thus, a growth rate of 127 mm/h represents the best combination of fast processing and mechanical properties for this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.L. Walter and H.E. Cline: Metall. Trans., 1970, vol. 1, pp. 1221–29.

    CAS  Google Scholar 

  2. D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, and J.D. Whittenberger: Intermetallics, 1995, vol. 3, pp. 99–113.

    Article  CAS  Google Scholar 

  3. J.M. Yang, S.M. Jeng, K. Bain, and R.A. Amato: Acta Mater., 1997, vol. 45, pp. 295–305.

    Article  CAS  Google Scholar 

  4. J.D. Whittenberger, S.V. Raj, I.E. Locci, and J.A. Salem: Intermetallics, 1999, vol. 7, pp. 1159–68.

    Article  CAS  Google Scholar 

  5. J.D. Cotton, R.D. Noebe, and M.J. Kaufman: Structural Intermetallics, R. Darolia, J.J. Lewandowski, C.T. Liu, P.L. Martin, D.B. Miracle, and M.V. Nathal, eds., TMS, Warrendale, PA, 1993, pp. 513–22.

    Google Scholar 

  6. H.E. Cline and J.L. Walter: Metall. Trans., 1970, vol. 1, pp. 2907–17.

    CAS  Google Scholar 

  7. S.M. Joslin: Ph.D. Thesis, The University of Tennessee, Knoxville, TN, 1995.

    Google Scholar 

  8. J.M. Yang: JOM, 1997, vol. 49 (8), pp. 40–43.

    CAS  Google Scholar 

  9. J.D. Whittenberger, R.D. Noebe, D.R. Johnson, and B.F. Oliver: Intermetallics, 1997, vol. 5, pp. 173–84.

    Article  CAS  Google Scholar 

  10. S.V. Raj, I.E. Locci, and J.D. Whittenberger: Creep Behavior of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K. Linga Murty, eds., TMS, Warrendale, PA, 1999, pp. 295–310.

    Google Scholar 

  11. J. Daniel Whittenberger, S.V. Raj, and Ivan E. Locci: MRS paper, MRS, Pittsburgh, PA, 2001

    Google Scholar 

  12. “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials,” Test Method E 399-90, Annual Book of ASTM Standards, 03.01, ASTM, West Conshohocken, PA, 1990.

  13. J.A. Salem, L.J. Ghosn, and M.G. Jenkins: Ceram. Eng. Sci. Proc., 1998, vol. 19, pp. 587–94.

    Article  CAS  Google Scholar 

  14. “Standard Test Method for Fracture Toughness of Advanced Ceramics,” Test Method PS070, Annual Book of ASTM Standards, 15.01 ASTM, West Conshohocken, PA, 1998.

  15. S.V. Raj and I.E. Locci: Intermetallics, 2001, vol. 9, pp. 217–27.

    Article  CAS  Google Scholar 

  16. H.E. Cline, J.L. Walter, E. Lifshin, and R.R. Russell: Metall. Trans., 1971, vol. 2, pp. 189–94.

    CAS  Google Scholar 

  17. R.D. Noebe, R.R. Bowman, and M.V. Nathal: Int. Mater. Rev., 1993, vol. 38, pp. 193–232.

    CAS  Google Scholar 

  18. A. Misra, Z.L. Zu, R. Gabala, R.D. Noebe, and B.F. Oliver: Structural Intermetallics, M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, and M. Yamaguchi, eds., TMS, Warrendale, PA, 1997, pp. 673–82.

    Google Scholar 

  19. T.M. Pollock and D. Kolluru: Micromechanics of Advanced Materials, S.N.G. Chu, P.K. Law, R.J. Arsenault, K. Sadananda, K.S. Chan, W.W. Gerberich, C.C. Chau, and T.M. Kung, TMS, Warrendale, PA, 1995, pp. 205–12.

    Google Scholar 

  20. J. Daniel Whittenberger, S.V. Raj, and I.E. Locci: Creep Deformation: Fundamentals and Applications, R.S. Mishra, J.C. Earthman, and S.V. Raj, eds., TMS, Warrendale, PA, 2002 pp. 331–41.

    Google Scholar 

  21. K.R. Forbes, U. Glatzel, R. Darolia, and W.D. Nix: in High Temperature Ordered Intermetallics—V, I. Baker, R. Darolia, J.D. Whittenberger, and M.H. Yoo, eds., Materials Research Society, Pittsburgh, PA, 1993, vol. 288, pp. 45–57.

    Google Scholar 

  22. J.D. Whittenberger, I.E. Locci, Ram Darolia, and R. Bowman: Mater. Sci. Eng., A, 1999, vol. A268, pp. 165–83.

    CAS  Google Scholar 

  23. J.R. Stephens and W.D. Klopp: J. Less-Common Met., 1972, vol. 27, pp. 87–94.

    Article  CAS  Google Scholar 

  24. J. Daniel Whittenberger, Beverly Aikin, and Jon Salem: unpublished research.

  25. S.V. Raj and G.M. Phaar: Mater. Sci. Eng., 1986, vol. 81, pp. 217–37.

    Article  CAS  Google Scholar 

  26. O.D. Sherby, R.H. Klundt, and A.K. Miller: Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    CAS  Google Scholar 

  27. J.D. Whittenberger: J. Mater. Sci., 1987, vol. 22, pp. 394–402.

    Article  CAS  Google Scholar 

  28. J.D. Whittenberger, R.D. Noebe, and A. Garg: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3170–80.

    Google Scholar 

  29. D.V. Kolluru and T.M. Pollock: Acta Mater., 1998, vol. 46, pp. 2859–76.

    Article  CAS  Google Scholar 

  30. J.A. Jimenez, S. Klaus, M. Carsi, O.A. Ruano, and G. Frommeyer: Acta Mater., 1999, vol. 47, pp. 3655–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whittenberger, J.D., Raj, S.V., Locci, I.E. et al. Elevated temperature strength and room-temperature toughness of directionally solidified Ni-33Al-33Cr-1Mo. Metall Mater Trans A 33, 1385–1397 (2002). https://doi.org/10.1007/s11661-002-0063-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0063-z

Keywords

Navigation