Skip to main content
Log in

Sintering behavior and properties of SiC/Si3N4 composite

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

SiC/Si3N4 composite was pressureless sintered using self-propagating high-temperature combustion synthesis α-Si3N4 powder and appropriate amount of β-SiC powder. Both of the sintering additive systems were used, which were YAN (Y2O3–Al2O3–AlN) and YN (Y2O3–AlN). The influences of β-SiC content on sintering behavior of SiC/Si3N4 composite were investigated. The results show that the density, shrinkage, bending strength, hardness, and fracture toughness of the samples with two sintering additive systems increase first with the increase of the contents of β-SiC and then decrease even when β-SiC contents continually increase. The tendency of weight loss of the samples is opposite. The β-SiC content of the samples with the best mechanical properties is different in two systems. For YAN system, the best mechanical properties of the samples are gained when β-SiC content reaches 10 %, while as for YN system it is 5 %. The properties of YN samples are superior to YAN samples. J phase (2Y2O3·Si2N2O) forms in YN system easily. A small amount of M phase (Y2O3·Si3N4) is observed in YAN system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li JT, Mei L, Yang Y, Lin ZM. Combustion synthesis of Si3N4 by selective reaction of silicon with nitrogen in air, J. Am Ceram Soc. 2009;92(3):636.

    Article  Google Scholar 

  2. Wang SH, Zhang YC. Study on self-propagation high temperature synthesis of silicon nitride powder. Metall Ind. 2004;14(5):1.

    Google Scholar 

  3. Cao YG, Ge CC, Zhou ZJ. Effect of Si particle size on SHS Si3N4. J Chin Ceram Soc. 1998;26(5):551.

    Google Scholar 

  4. Tang XY, Song QW, Zhang YM, Zhang YM, Jia RX, Lü HL, Wang YH. Investigation of 4H–SiC metal–insulation–semiconductor structure with Al2O3/SiO2 stacked dielectric. Chin Phys B. 2012;21(8):087701.

    Article  Google Scholar 

  5. Fu GS, Wang XZ, Lu WB, Dai WL, Li XK, Yu W. Structural and band tail state photoluminescence properties of amorphous SiC films with different amounts of carbon. Chin Phys B. 2012;21(10):107802.

    Article  Google Scholar 

  6. Huang XY, Chen DQ, Lin L, Wang ZZ, Wang YS, Feng ZH, Zheng ZQ. Concentration quenching in transparent glass ceramics containing Er3+:NaYF4 nanocrystals. Sci China-Phys Mech Astron. 2012;55(7):1148.

    Article  Google Scholar 

  7. Lin X, Guan QF, Li HB, Liu Y, Zou GT. Preparation and characterization of dense lanthanum-doped bismuth titanate ceramics. Sci China-Phys Mech Astron. 2012;55(1):33.

    Article  Google Scholar 

  8. Han YY, Guo H, Yin FZ, Zhang XM, Chu K, Fan YM. Microstructure and thermal conductivity of copper matrix composites reinforced with mixtures of diamond and SiC particles. Rare Met. 2012;31(1):58.

    Article  Google Scholar 

  9. Dong SM, Jiang DL, Tan SH, Guo JK. Hot isostatic pressing of SiC/Si3N4 composite with rare earth oxide additions. Ceram Int. 1995;21(6):451.

    Article  Google Scholar 

  10. Zhang WR, Li Y, Chen W. Effect of nano-SiC particles on the performance and microstructure of Si3N4/SiC composite ceramics. J Synth Cryst. 2007;36(5):1207.

    Google Scholar 

  11. Hnatko M, Galusek D, Sajgalik P. Low-cost preparation of Si3N4-SiC micro/nano composites by in situ carbothermal reduction of silicon in silicon nitride matrix. J Eur Ceram Soc. 2004;24(2):189.

    Article  Google Scholar 

  12. Luo M, Hou GY, Yang JF, Fang JZ, Gao JQ, Zhao L, Li X. Manufacture of fibrous β-Si3N4-reinforced biomorphic SiC matrix composites for bioceramic scaffold applications. Mater Sci Eng C. 2009;29(4):1422.

    Article  Google Scholar 

  13. Šajgalík P, Hnatko M, Lofaj F, Hvizdoš P, Dusza J, Warbichler P, Hofer F, Riedel R, Lecomte E, Hoffmann MJ. SiC Si3N4 nano/micro-composite-processing, RT and HT mechanical properties. J Eur Ceram Soc. 2000;20(4):453.

    Google Scholar 

  14. Takahashi K, Murase H, Yoshida S, Houjou K, Ando K, Saito S. Improvement of static fatigue strength of Si3N4/SiC crack-healed under cyclic stress. J Eur Ceram Soc. 2005;25(11):1953.

    Article  Google Scholar 

  15. Hegedűsová L, Kašiarová M, Dusza J, Hnatko M, Šajgalík P. Mechanical properties of carbon-derived Si3N4+SiC micro/nano-composite. Int J Refract Metals Hard Mater. 2009;27(2):438.

    Article  Google Scholar 

  16. Wu LE, Sun WZ, Chen YH, Lu YJ, Jiang Y, Huang ZK. Phase relations in Si–C–N–O–R(R = La, Gd, Y) systems. J Am Ceram Soc. 2011;94(12):4453.

    Article  Google Scholar 

Download references

Acknowledgments

The present research was financially supported by the National Natural Science Foundation of China (No. 51362001) and the Key Projects of Beifang University of Nationalities, China. (No. 2012XZK02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Y., Wu, LE. & Sun, WZ. Sintering behavior and properties of SiC/Si3N4 composite. Rare Met. 34, 95–100 (2015). https://doi.org/10.1007/s12598-013-0187-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0187-x

Keywords

Navigation