Skip to main content
Log in

Phase transition and mechanical properties of Ni30Cu20Mn37+x Ga13−x (x = 0–4.5) alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ni30Cu20Mn37+x Ga13−x (x = 0–4.5) alloys were studied with the phase transformation and mechanical properties. With the increase of Mn content, the martensitic transformation temperatures increase and the Curie temperature decreases. Simultaneously, the room temperature microstructure evolves from single phase of austenite to dual phases containing martensite and precipitation. Both the ductility and the strength of the polycrystalline alloys are significantly improved by the precipitation. Coupled magnetostructural transition from weak magnetic martensite to ferromagnetic austenite is obtained in both single-phase and ductile dual-phase alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu Q, Liu FS. Transformation behavior and shape memory effect of Ti50−x Ni48Fe2Nb x alloys by aging treatment. Rare Met. 2012;31(4):311.

    Article  Google Scholar 

  2. Xin G, Wei C, Gao ZY. Microstructure, compression property and shape memory effect of Ru–Nb high temperature shape memory alloy. Rare Met. 2007;26(SI):51.

    Google Scholar 

  3. Liang CH, Chen BY, Chen W, Wang H. Corrosion resistance of benzotriazole passivated Cu–Zn–Al shape memory alloy in artificial Ringer’s solution. Rare Met. 2005;24(3):252.

    Google Scholar 

  4. Ye WJ, Mi XJ, Song XY. Martensitic transformation of Ti–18Nb (at%) alloy with zirconium. Rare Met. 2012;31(3):227.

    Article  Google Scholar 

  5. Ullakko K, Huang JK, Kanter C, O’Handley RC, Kokorin VV. Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl Phys Lett. 1996;69(13):1966.

    Article  Google Scholar 

  6. Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature. 2006;439(23):957.

    Article  Google Scholar 

  7. Straka L, Soroka A, Seiner H, Hanninen H, Sozinov A. Temperature dependence of twinning stress of Type I and Type II twins in 10 M modulated Ni–Mn–Ga martensite. Scripta Mater. 2012;67(1):25.

    Article  Google Scholar 

  8. Chernenko VA, Barandiarán JM, L’vov VA, Gutiérrez J, Lázpita P, Orue I. Temperature dependent magnetostrains in polycrystalline magnetic shape memory Heusler alloys. J Alloys Compd. 2011;12:117.

    Google Scholar 

  9. Straka L, Heczko O. Magnetization changes in Ni–Mn–Ga magnetic shape memory single crystal during compressive stress reorientation. Scripta Mater. 2006;54(8):1549.

    Article  Google Scholar 

  10. Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov YI, Maier HJ. Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys: a new actuation mechanism with large work output. Adv Funct Mater. 2009;19(7):983.

    Article  Google Scholar 

  11. Pasquale M, Sasso CP, Giudici L, Lograsso T, Schlagel D. Field-driven structural phase transition and sign-switching magneto caloric effect in Ni–Mn–Sn. Appl Phys Lett. 2007;91(13):131904.

    Article  Google Scholar 

  12. Yu SY, Ma L, Liu GD, Liu ZH, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys. Appl Phys Lett. 2007;90(24):242501.

    Article  Google Scholar 

  13. Kainuma R, Ito W, Umetsu RY, Oikawa K, Ishida K. Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys. Appl Phys Lett. 2008;93(9):091906.

    Article  Google Scholar 

  14. Yu SY, Cao ZX, Ma L, Liu GD, Chen JL, Wu GH, Zhang B, Zhang XX. Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys. Appl Phys Lett. 2007;91(10):102507.

    Article  Google Scholar 

  15. Yu SY, Yan SS, Kang SS, Tang XD, Qian JF, Chen JL, Wu GH. Magnetic field-induced martensite–austenite transformation in Fe-substituted NiMnGa ribbons. Scripta Mater. 2011;65(1):9.

    Article  Google Scholar 

  16. Jiang CB, Wang JM, Li PP, Jia A, Xu HB. Search for transformation from paramagnetic martensite to ferromagnetic austenite: NiMnGaCu alloys. Appl Phys Lett. 2009;95(1):012501.

    Article  Google Scholar 

  17. Lee Y, Todai M, Okuyama T, Fukuda T, Kakeshita T, Kainuma R. Isothermal nature of martensitic transformation in an Ni45Co5Mn36·5In13.5 magnetic shape memory alloy. Scripta Mater. 2011;64(10):927.

    Article  Google Scholar 

  18. Sharma VK, Chattopadhyay MK, Shaeb KHB, Chouhan A, Roy SB. Large magnetoresistance in Ni50Mn34In16 alloy. Appl Phys Lett. 2006;89(22):222509.

    Article  Google Scholar 

  19. Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K, Ishida K. Observation of large magnetoresistance of magnetic Heusler alloy Ni50Mn36Sn14 in high magnetic fields. Appl Phys Lett. 2006;89(18):182510.

    Article  Google Scholar 

  20. Liu J, Scheerbaum N, Lyubina J, Gutfleisch O. Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni–Mn–In–Co. Appl Phys Lett. 2008;93(10):102512.

    Article  Google Scholar 

  21. Han ZD, Wang DH, Zhang CL, Xuan HC, Zhang JR, Gu BX, Du YW. The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni–Mn–Sb ferromagnetic shape memory alloys. J Appl Phys. 2008;104(5):053906.

    Article  Google Scholar 

  22. Liu J, Scheerbaum N, Weiß S, Gutfleisch O. Ni–Mn–In–Co single-crystalline particles for magnetic shape memory composites. Appl Phys Lett. 2009;95(15):152503.

    Article  Google Scholar 

  23. Feng Y, Sui JH, Gao ZY, Dong GF, Cai W. Microstructure, phase transitions and mechanical properties of Ni50Mn34In16–yCoy alloys. J Alloys Compd. 2009;476(1–2):935.

    Article  Google Scholar 

  24. Ito K, Ito W, Umetsu RY, Tajima S, Kawaura H, Kainuma R, Ishida K. Metamagnetic shape memory effect in polycrystalline NiCoMnSn alloy fabricated by spark plasma sintering. Scripta Mater. 2009;61(5):504.

    Article  Google Scholar 

  25. Monroe JA, Cruz-Perez J, Yegin C, Karaman I, Geltmacher AB, Everett RK, Kainuma R. Magnetic response of porous NiCoMnSn metamagnetic shape memory alloys fabricated using solid-state replication. Scripta Mater. 2012;67(1):116.

    Article  Google Scholar 

  26. Li PP, Wang JM, Jiang CB, Xu HB. Magnetic field-induced reverse martensitic transformation in NiMnGaCu alloy. J Phys D. 2011;44(28):285002.

    Article  Google Scholar 

  27. Jiang CB, Muhammad Y, Deng LF, Wu W, Xu HB. Composition dependence on the martensitic structures of the Mn-rich NiMnGa alloys. Acta Mater. 2004;52(19):2779.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (No. 2012CB619404), the National Natural Science Foundation of China (Nos. 50925101, 51221163, and 51001004), Beijing Natural Science Foundation (No. 2132026), and the Fundamental Research Funds for Central Universities (No. YWF-12-LZGF-052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Min Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HF., Wang, JM., Jiang, CB. et al. Phase transition and mechanical properties of Ni30Cu20Mn37+x Ga13−x (x = 0–4.5) alloys. Rare Met. 33, 547–551 (2014). https://doi.org/10.1007/s12598-013-0103-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0103-4

Keywords

Navigation