Skip to main content
Log in

Near room temperature martensitic transition in ductile Ni50Mn30−xFexSn20−ySby (1 ≤ x ≤ 4 and 2 ≤ y ≤ 8) Heusler alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A Ni50Mn30 − xFexSn20 − ySby (1 ≤ x ≤ 4 and 2 ≤ y ≤ 8) Heusler alloy series is synthesized for studying effect of Fe and Sb substitution on the magnetostructural transitions and mechanical properties. X-ray diffraction patterns reveal transition of the alloys from austenite to martensite phase when Fe and Sb contents are respectively increased with x = 1 through 4 and y = 2 through 8. Austenite phase is found at x = 1, 2 and y = 2, 4 and martensitic phase at x = 3, 4 and y = 6, 8. Microstructures confirm the martensite phase in terms of strips of average thickness ~ 0.3 μm. The fracture morphologies reveal growth of textured polycrystalline granular walls. In calorimetric curves, martensitic transition occurs near room temperature for x = 2 and y = 4. The dynamics of spins in the nanoplates of the alloys are studied in terms of temperature dependence of magnetization.

Graphical abstract

A Ni50Mn30 − xFexSn20 − ySby (1 ≤ x ≤ 4 and 2 ≤ y ≤ 8) Heusler alloy series is synthesized for studying effect of Fe and Sb substitution on the magnetostructural transitions and mechanical properties. X-ray diffraction patterns reveal transition of the alloys from austenite to martensite phase when Fe and Sb contents are respectively increased with x = 1 through 4 and y = 2 through 8. Austenite phase is found at x = 1, 2 and y = 2,4 and martensitic phase at x = 3, 4 and y = 6,8. Microstructures confirm the martensite phase in terms of strips of average thickness ~ 0.3 μm. The fracture morphologies reveal growth of textured polycrystalline granular walls. In calorimetric curves, martensitic transition occurs near room temperature for x = 2 and y = 4. The dynamics of spins in the nanoplates of the alloys are studied in terms of temperature dependence of magnetization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, Appl. Phys. Lett. 69, 1966 (1996)

    Article  CAS  Google Scholar 

  2. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002)

    Article  CAS  Google Scholar 

  3. I. Karaman, H.E. Karaca, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, Scripta Mater. 55, 403 (2006)

    Article  CAS  Google Scholar 

  4. H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, Acta Mater. 55, 4253 (2007)

    Article  CAS  Google Scholar 

  5. J. Pons, R. Santamarta, V.A. Chernenko, E. Cesari, Mater. Sci. Eng. A. 438, 931 (2006)

    Article  Google Scholar 

  6. D.Y. Cong, Y.D. Zhang, Y.D. Wang, M. Humbert, X. Zhao, T. Watanabe, L. Zuo, C. Esling, Acta Mater. 55, 4731 (2007)

    Article  CAS  Google Scholar 

  7. A.A. Prasanna, S. Ram, Sci. Technol. Adv. Mater. 14, 015004 (2013)

    Article  CAS  Google Scholar 

  8. A.A. Prasanna, S. Ram, H.-J. Fecht, J. Nanosci. Nanotechnol. 13, 5351 (2013)

    Article  CAS  Google Scholar 

  9. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, Phys. Rev. B. 73, 174413 (2006)

    Article  Google Scholar 

  10. H.C. Xuan, Y.Q. Zhang, H. Li, P.D. Han, D.H. Wang, Y.W. Du, Appl. Phys. A. 119, 597 (2015)

    Article  CAS  Google Scholar 

  11. A. Planes, L. Manosa, M. Acet, J. Phys, Condens. Matter. 21, 233201 (2009)

    Article  Google Scholar 

  12. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Nat. Mater. 4, 450 (2005)

    Article  CAS  Google Scholar 

  13. T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Manosa, A. Planes, Phys. Rev. B. 72, 014412 (2005)

    Article  Google Scholar 

  14. X. Wang, F. Sun, J. Wang, Q. Yu, Y. Wu, H. Hua, C. Jiang, J. Alloy. Compd. 691, 215 (2017)

    Article  CAS  Google Scholar 

  15. S. Pandey et al., J. Alloy. Compd. 731, 678 (2018)

    Article  CAS  Google Scholar 

  16. X.-Z. Li, W.-Y. Zhang, S. Valloppilly, D.J. Sellmyer, Sci. Rep. 9, 7762 (2019)

    Article  Google Scholar 

  17. F.X. Hu, B.-G. Shen, J.-R. Sun, Chin. Phys. B. 22, 037505 (2013)

    Article  Google Scholar 

  18. I. Dubenko et al., J. Magn. Magn. Mater. 324, 3530 (2012)

    Article  CAS  Google Scholar 

  19. A. Quetz et al., J. Alloy. Compd. 683, 139 (2016)

    Article  CAS  Google Scholar 

  20. N.H. Dan et al., J. Magn. Magn. Mater. 374, 372 (2015)

    Article  CAS  Google Scholar 

  21. R.Y. Umetsu et al., J. Phys. D: Appl. Phys. 42, 075003 (2009)

    Article  Google Scholar 

  22. X. Moya, L. Manosa, A. Planes, T. Krenke, M. Acet, E.F. Wassermann, Mater Sci Eng A 911, 438 (2006)

    Google Scholar 

  23. J. Smit, J Phys F Metal Phys 8, 2139 (1978)

    Article  CAS  Google Scholar 

  24. Z.D. Han, D.H. Wang, C.L. Zhang, H.C. Xuan, J.R. Zhang, B.X. Gu, Mater Sci Eng B 157, 40 (2009)

    Article  CAS  Google Scholar 

  25. J. Chen, Y. Li, J. Shang, H. Xu, Appl. Phys. Lett. 89, 231921 (2006)

    Article  Google Scholar 

  26. S. Esakki Muthu, N.V. Rama Rao, R. Thiyagarajan, U. Devarajan, M. Manivel Raja, S. Arumugam, Appl. Phys. Lett. 104, 092404 (2014)

    Article  Google Scholar 

  27. A. Wojcik, W. Maziarz, M. Szczerba, M. Sikora, A. Zywczak, L. Hawelek, E. Cesari, Phys. Stat. Solidi (a) 215–23, 1800358 (2018)

    Article  Google Scholar 

  28. Z.H. Liu, M. Zhang, W.Q. Wang, W.H. Wang, J.L. Chen, G.H. Wu et al., J. Appl. Phys. 92(9), 5006 (2002)

    Article  CAS  Google Scholar 

  29. Z.H. Liu, Z.G. Wu, H. Yang, Y.N. Liu, E.K. Liu, H.W. Zhang et al., Intermetallics 18, 1690 (2010)

    Article  CAS  Google Scholar 

  30. E. Dogan, I. Karaman, N. Singh, A. Chivukula, H.S. Thawabi, R. Arroyave, Acta Mater. 60, 3545 (2012)

    Article  CAS  Google Scholar 

  31. D.H. Wang et al., J. Appl. Phys. 102, 013909 (2007)

    Article  Google Scholar 

  32. I. Dincer, E. Yüzüak, Y. Elerman, J. Alloys Compd. 506, 508 (2010)

    Article  CAS  Google Scholar 

  33. Y. Feng, J. Sui, Z. Gao, W. Cai, Int. J. Mod. Phys. B. 23, 1803 (2009)

    Article  CAS  Google Scholar 

  34. K. Fukushima et al., Scr. Mater. 61, 813 (2009)

    Article  CAS  Google Scholar 

  35. Z.G. Wu et al., Intermetallics 19, 445 (2011)

    Article  Google Scholar 

  36. E.C. Passamani et al., J. Alloys Compd. 509, 7826 (2011)

    Article  CAS  Google Scholar 

  37. L. Feng et al., Appl. Phys. Lett. 100, 152401 (2012)

    Article  Google Scholar 

  38. A.S. Turabi et al., J. Phys. D: Appl. Phys. 49, 205002 (2016)

    Article  Google Scholar 

  39. C.O. Aguilar-Ortiz et al., Acta Mater. 107, 9 (2016)

    Article  CAS  Google Scholar 

  40. S.B. Qadri, E.P. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Phys. Rev. B 60, 9191 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Arout Chalvane J., Defence Metallurgical Research Laboratory, Hyderabad-500066, India, for part of this work.

Funding

This research is carried out by self-financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Prasanna.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachin, S., Prasanna, A.A. & Ningappa, C. Near room temperature martensitic transition in ductile Ni50Mn30−xFexSn20−ySby (1 ≤ x ≤ 4 and 2 ≤ y ≤ 8) Heusler alloys. Journal of Materials Research 38, 2264–2273 (2023). https://doi.org/10.1557/s43578-023-00963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00963-5

Navigation