Skip to main content
Log in

Preparation and UV property of size-controlled monodisperse nickel nanoparticles (<10 nm) by reductive method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nickel nanoparticles (<10 nm) were successfully synthesized using a reductive method of nickel chloride with sodium borohydride in the ethanol/polyvinylpyrrolidone (PVP) system. The effects of three factors, such as the concentration of the nickel ions, the time of reaction, and the amount of PVP (surfactant), were discussed. The possible growth process of the particles and optimum reactive conditions was also investigated. The result of transmission electron microscopy (TEM) reveals that these nickel nanoparticles are spherical. The average diameter could be controlled as 2–5 nm under selected conditions. High-resolution TEM and energy-dispersive spectroscopy results indicates that the nickel nanoparticles are pure. The UV–visible light absorption spectrum shows that the peaks of nickel nanoparticles moves toward the short wavelength along with the decrease of sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fendler JH. Atomic and molecular clusters in membrane mimetic chemistry. Chem Rev. 1987;87(5):877.

    Article  CAS  Google Scholar 

  2. Henglein A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev. 1989;89(8):1861.

    Article  CAS  Google Scholar 

  3. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271(5251):933.

    Article  CAS  Google Scholar 

  4. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem. 1996;100(31):13169.

    Article  Google Scholar 

  5. Bautista FM, Campelo JM, Garcia A, Guardeño R, Luna D, Marinas JM. Influence of Ni/Cu alloying on sepiolite-supported nickel catalysts in the liquid-phase selective hydrogenation of fatty acid ethyl esters. J Mol Catal A Chem. 1996;104(3):229.

    Article  CAS  Google Scholar 

  6. Capek I. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface. 2004;110(1–2):49.

    Article  CAS  Google Scholar 

  7. Briñas RP, Hu MH, Qian LP, Lymar ES, Hainfeld JF. Gold nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J Am Chem Soc. 2008;130(3):975.

    Article  Google Scholar 

  8. Wu ZG, Zhao YX, Xu LP, Liu DS. Preparation of zirconia aerogel by heating of alcohol–aqueous salt solution. J Non Cryst Solids. 2003;330(1–3):274.

    Article  CAS  Google Scholar 

  9. Woo KG, Hong JW, Choi SM, Lee HW, Ahn JP, Kim CS, Lee SW. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater. 2004;16(14):2814.

    Article  CAS  Google Scholar 

  10. Du XY, Inokuchi M, Toshima N. Preparation and characterization of Co–Pt bimetallic magnetic nanoparticles. J Magn Magn Mater. 2006;299(1):21.

    Article  CAS  Google Scholar 

  11. Du X, Zhang D, Shi L, Zhang J. Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C. 2012;116(18):10009.

    Article  CAS  Google Scholar 

  12. Siegela RW, Ramasamya S, Hahna H, Zongquana L, Tinga L, Gronsky R. Synthesis, characterization, and properties of nanophase TiO2. J Mater Res. 1988;3(6):1367.

    Article  Google Scholar 

  13. Chen S, Qu S, Liang J, Han J. Effects of treatment on mechanical properties of ODS nickel-based superalloy sheets prepared by EB_PVD. Rare Met. 2011;30(1):76.

    Article  Google Scholar 

  14. Zhang HT, Wu G, Chen XH, Qiu XG. Synthesis and magnetic properties of nickel nanocrystals. Mater Res Bull. 2006;41(3):495.

    Article  CAS  Google Scholar 

  15. Ely TO, Amiens C, Chaudret B, Snoeck E, Verelst M, Respaud M, Broto JM. Synthesis of nickel nanoparticles. Influence of aggregation induced by modification of poly (vinylpyrrolidone) chain length on their magnetic properties. Chem Mater. 1999;11(3):526.

    Article  CAS  Google Scholar 

  16. Bradley SJ, Tesche B, Busser W, Maase M, Reetz MT. Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. J Am Chem Soc. 2000;122(19):4631.

    Article  CAS  Google Scholar 

  17. Huang X, Chen J, Wang L, Zhang Q. Electromagnetic and microwave absorbing properties of W-type barium ferrite doped with Gd3+. Rare Met. 2011;30(1):44.

    Article  CAS  Google Scholar 

  18. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO. Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interface Sci. 1995;55(1):241.

    Article  CAS  Google Scholar 

  19. Pileni MP. Reverse micelles as microreactors. J Phys Chem. 1993;97(27):6961.

    Article  CAS  Google Scholar 

  20. Zhou HH, Peng CY, Jiao SQ, Zeng W, Chen JH, Kuang YF. Electrodeposition of nanoscaled nickel in a reverse microemulsion. Electrochem Commun. 2006;8(7):1142.

    Article  CAS  Google Scholar 

  21. Chen DH, Wu SH. Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem Mater. 2000;12(5):1354.

    Article  CAS  Google Scholar 

  22. Wang HY, Jiao XL, Chen DR. Monodispersed nickel nanoparticles with tunable phase and size: synthesis, characterization, and magnetic properties. J Phys Chem C. 2008;112(48):18793.

    CAS  Google Scholar 

  23. Carenco S, Boissière C, Nicole L, Sanchez C, Le Floch P, Mézailles N. Controlled design of size-tunable monodisperse nickel nanoparticles. Chem Mater. 2010;22(4):1340.

    Article  CAS  Google Scholar 

  24. Hou Y, Kondoh H, Ohta T, Gao S. Size-controlled synthesis of nickel nanoparticles. Appl Surf Sci. 2005;241(1–2):218.

    Article  CAS  Google Scholar 

  25. Kreibig U. Optical absorption of small metallic particles. Surf Sci. 1985;156(2):678.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Nos. 51272025 and 50872011), the National Key Basic Research Development Plan (973 Program) (No. 2007CB613608), and the New Century Excellent Researcher Award Program from Ministry of Education of China (No. NCET-08-0732).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Zheng, F., Guo, M. et al. Preparation and UV property of size-controlled monodisperse nickel nanoparticles (<10 nm) by reductive method. Rare Met. 32, 179–185 (2013). https://doi.org/10.1007/s12598-013-0042-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-013-0042-0

Keywords

Navigation