Skip to main content
Log in

Structural and Magnetic Properties of Nickel Nanoparticles Prepared by Arc Discharge Method Using an Ultrasonic Nebulizer

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Synthesis of nanoparticles with unique properties has attracted a lot of interest of scientists and researchers these days. A key aspect of being able to manipulate the properties of the nanomaterials is the nanoscale architecture and engineering by various processing techniques. A synthetic strategy was developed to control the preparation of nickel nanoparticles Ni-NPs produced using an arc discharge technique with an ultrasonic nebulizer. The sample was characterized for its structural and magnetic properties using X-ray diffraction, ultraviolet–visible (UV–Vis) spectrophotometer, zeta potential, high resolution transmission electron microscope, scanning electron microscope, vibrating sample magnetometer. The resulted sample unveiled small, spherical and homogeneous Ni nanoparticles with an average size 15 nm lower than the critical size which indicates a superparamagnetic behavior. The zeta potential measurements shows + 49.01 ± 3.2 mV which confirms the synthesis of stable Ni nanoparticles. A UV–Vis spectrum of the nanosized Ni sample shows a sharp absorption peak between 362 and 380 nm. The magnetic properties shows no hysteresis and zero results for coercivity force and remanence that indicates superparamagnetic behavior of the Ni nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. T. K. Thanh (ed.) Magnetic Nanoparticles: From Fabrication to Clinical Applications (CRC Press, Boca Raton, 2012).

    Google Scholar 

  2. R. Serrano García, S. Shelley, and Y. K. Gun’ko (2018). Appl. Sci. 8, (2), 172.

    Article  Google Scholar 

  3. T. Hyeon (2003). Chem. Commun. 8, 927–934.

    Article  Google Scholar 

  4. B. Xia, I. W. Lenggoro, and K. Okuyama (2001). J. Mater. Sci. 36, (7), 1701–1705.

    Article  CAS  Google Scholar 

  5. A. D. Omrani, M. A. Bousnina, L. S. Smiri, M. Taibi, P. Leone, F. Schoenstein, and N. Jouini (2010). Mater. Chem. Phys. 123, (2–3), 821–828.

    Article  CAS  Google Scholar 

  6. N. R. Nik Roselina and A. Azizan (2012). Procedia Eng. 41, 1620–1626.

    Article  Google Scholar 

  7. R. Rudolf, B. Friedrich, S. Stopic, I. Anzel, S. Tomic, and M. Colic (2012). J. Biomater. Appl. 26, (5), 595–612.

    Article  CAS  Google Scholar 

  8. M. Hemalatha, N. Suriyanarayanan, and S. Prabahar (2014). Opt. Int. J. Light Electron Opt. 125, (8), 1962–1966.

    Article  CAS  Google Scholar 

  9. M. R. Vaezi, M. Barzgar Vishlaghi, M. Farzalipour Tabriz, and O. Mohammad Moradi (2015). J. Alloys Compd. 635, 118–123.

    Article  CAS  Google Scholar 

  10. M. D. Stopić (2015). Vojnotehnički glasnik 63, (4), 215–223.

    Google Scholar 

  11. N. R. Haghighi and R. Poursalehi (2015). Procedia Mater. Sci. 11, 347–351.

    Article  CAS  Google Scholar 

  12. A. M. El-Khatib, M. S. Badawi, G. D. Roston, A. M. Khalil, R. M. Moussa, and M. M. Mohamed (2018). J. Nano Res. 52, 88–101.

    Article  Google Scholar 

  13. J. Singh, T. Patel, N. Kaurav, and G. S. Okram (2016). AIP Conf. Proc. 1731, (1), 050036.

    Article  Google Scholar 

  14. A. M. El-Khatib, M. S. Badawi, Z. F. Ghatass, M. M. Mohamed, and M. Elkhatib (2018). J. Clust. Sci. https://doi.org/10.1007/s10876-018-1430-2.

    Article  Google Scholar 

  15. J. H. Bang and K. S. Suslick (2010). Adv. Mater. 22, (10), 1039–1059.

    Article  CAS  Google Scholar 

  16. E. Hontañón, J. M. Palomares, M. Stein, X. Guo, R. Engeln, H. Nirschl, and F. E. Kruis (2013). J. Nanopart. Res. 15, (9), 1957.

    Article  Google Scholar 

  17. P. Ahuja, S. K. Ujjain, R. K. Sharma, and G. Singh (2014). RSC Adv. 4, (100), 57192–57199.

    Article  CAS  Google Scholar 

  18. R. Sharma, D. P. Bisen, U. Shukla, and B. G. Sharma (2012). Recent Res. Sci. Technol. 4, (8), 77–79.

    CAS  Google Scholar 

  19. B. Ingham (2015). Crystallogr. Rev. 21, (4), 229–303.

    Article  Google Scholar 

  20. M. M. Mohamed, Z. F. Ghatass, E. A. Shalaby, M. M. Kotb, and M. El-Raey (2000). Fresenius’ J. Anal. Chem. 368, (8), 809–815.

    Article  CAS  Google Scholar 

  21. J. Kang, Y. Kim, H. Kim, X. Hu, N. Saito, J.-H. Choi, and M.-H. Lee (2016). Sci. Rep. https://doi.org/10.1038/srep38652.

    Article  PubMed  PubMed Central  Google Scholar 

  22. H. T. Rahal, R. Awad, A. M. Abdel-Gaber, and D. Bakeer (2017). J. Nanomater. https://doi.org/10.1155/2017/7460323.

    Article  Google Scholar 

  23. M. Kaszuba, J. Corbett, F. M. Watson, and A. Jones (2010). Philos. Trans. A. Math. Phys. Eng. Sci. 368, (1927), 4439–4451.

    Article  CAS  Google Scholar 

  24. J. D. Clogston and A. K. Patri (2011). Methods Mol. Biol. 697, 63–70.

    Article  CAS  Google Scholar 

  25. C. J. Pandian, R. Palanivel, and S. Dhananasekaran (2015). Chin. J. Chem. Eng. 23, (8), 1307–1315.

    Article  CAS  Google Scholar 

  26. G. Cheng, D. Romero, G. T. Fraser, and A. R. Hight Walker (2005). Langmuir 21, (26), 12055–12059.

    Article  CAS  Google Scholar 

  27. Y.-Y. Xu, L. Wang, T. Wu, and R.-M. Wang (2017). Rare Met. https://doi.org/10.1007/s12598-017-0938-1.

    Article  Google Scholar 

  28. M. R. Sanaee, S. Chaitoglou, N. Aguiló-Aguayo, and E. Bertran (2016). Appl. Sci. 7, (1), 26.

    Article  Google Scholar 

  29. N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens, and B. Chaudret (2001). Nano Lett. 1, (10), 565–568.

    Article  CAS  Google Scholar 

  30. X. He, W. Zhong, C.-T. Au, and Y. Du (2013). Nanoscale Res. Lett. 8, (1), 446.

    Article  Google Scholar 

  31. M. Khairy (2013). Int. J. Mater. Chem. 3, (5), 106–111.

    Google Scholar 

  32. A. Chiolerio and P. Allia Magnetic nanostructures and spintronics. in B. Bhushan (ed.), Encyclopedia of Nanotechnology (Springer, Dordrecht, 2012), pp. 1248–1256.

    Google Scholar 

  33. D. L. Leslie-Pelecky and R. D. Rieke (1996). Chem. Mater. 8, (8), 1770–1783.

    Article  CAS  Google Scholar 

  34. D. A. Dimitrov and G. M. Wysin (1996). Phys. Rev. B 54, (13), 9237.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the physics department, Faculty of Science, Alexandria University for providing instrumental and laboratory facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramy M. Moussa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khatib, A.M., Badawi, M.S., Roston, G.D. et al. Structural and Magnetic Properties of Nickel Nanoparticles Prepared by Arc Discharge Method Using an Ultrasonic Nebulizer. J Clust Sci 29, 1321–1327 (2018). https://doi.org/10.1007/s10876-018-1451-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1451-x

Keywords

Navigation