Skip to main content
Log in

Preparation and characterization of NiO hollow fibers consisting of nanoparticles derived from alginate salt precursor

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO) hollow fibers were obtained by thermal degradation of nickel alginate fibers (Ni-AF), which was prepared by wet spinning technique. The composition, morphology and microstructure of the as-obtained NiO fibers were investigated by thermal gravimetry (TG), X-ray diffraction (XRD), electron energy-loss spectroscopy (EELS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It is found that temperature plays important roles on the final structures and shapes of the NiO nanostructures. NiO hollow fibers (∼ 10 μm) consisting of NiO nanoparticles with diameter about 50 and 80 nm respectively are obtained under 600 and 800 °C in air. The mechanism of Ni-AF thermal degradation and NiO growth were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jang W.L., Lu Y.M., Hwang W.S., and Chen W.C., Electrical properties of Li-doped NiO films, Journal of the European Ceramic Society, 2010, 30(2): 503.

    Article  CAS  Google Scholar 

  2. Zhang W.B., Hu Y.L., and Tang B.Y., Phase stability and structural distortion of NiO under high pressure, Transactions of Nonferrous Metals Society of China, 2006, 16(S1): s52.

    Article  Google Scholar 

  3. Hakim A., Hossain J., and Khan K.A., Temperature effect on the electrical properties of undoped NiO thin films, Renewable Energy, 2009, 34(12): 2625.

    Article  CAS  Google Scholar 

  4. Wei Z.Q., Qiao H.X., Yang H., Zhang C.R., and Yan X.Y., Characterization of NiO nanoparticles by anodic arc plasma method, Journal of Alloys and Compounds, 2009, 479(1–2): 855.

    Article  CAS  Google Scholar 

  5. Nikolić M.V., Blagojević V., Paraskevopoulos K.M., Zorba T.T., Vasiljević-Radović D., Nikolić P.M., and Ristić M.M., Far infrared properties of sintered NiO, Journal of the European Ceramic Society, 2007, 27(2–3): 469.

    Article  Google Scholar 

  6. Steinebach H., Kannan S., Rieth L., and Solzbacher F., H2 gas sensor performance of NiO at high temperatures in gas mixtures, Sensors and Actuators B: Chemical, 2010, 151(1): 162.

    Article  Google Scholar 

  7. Mattisson T., Johansson M., and Lyngfelt A., The use of NiO as an oxygen carrier in chemical-looping combustion, Fuel, 2006, 85(5–6): 736.

    Article  CAS  Google Scholar 

  8. Deng Y.X., and Chen Z., Preparation of nano-NiO by ammonia precipitation and reaction in solution and cometitive balance, Materials Letters, 2004, 58(3–4): 276.

    Article  CAS  Google Scholar 

  9. Haug A., Larsen B., and Smidsrød O., Uronic acid sequence in alginate from different sources, Carbohydrate Research, 1974, 32(2): 217.

    Article  CAS  Google Scholar 

  10. Kong Q.S., Guo C.X., Cheng F.F., Ji Q., Li Y.H., and Xia Y.Z., Batch studies of zinc(II) ion adsorption onto alginate acid fibers, Adsorption Science and Technology, 2010, 28(4): 363.

    Article  CAS  Google Scholar 

  11. Kong Q.S., Cheng F.F., Guo C.X., Ji Q., and Xia Y.Z., Study on the adsorption property of alginate acid fibers to Cu2+, Journal of Functional Materials, 2009, 40(7): 1130.

    CAS  Google Scholar 

  12. Kong Q.S, Ji Q., Yu J., and Xia Y.Z., Preparation and properties of alginate salt fibers: an inherent flame-retardant, biodegradable fiber, Materials Science Forum, 2009, 610–613: 48.

    Article  Google Scholar 

  13. Kong Q.S., Wu X.L., Guo Y.G., Wang Y.Q., Xia Y.Z., Yu J., Liu H.H., and Duan X.F., Preparation and ZnO nanostructures by thermal degradation of zinc alginate fibers, Acta Phys. -Chim. Sin., 2008, 24(12): 2179.

    CAS  Google Scholar 

  14. Wu X.L., Chen L.L., Xin S., Yin Y.X., Guo Y.G., Kong Q.S., and Xia Y.Z., Preparation and Li storage properties of hierarchical porous carbon fibers derived from alginic acid, Chem. Sust. Ener. and Mater., 2010, 3(6): 703.

    CAS  Google Scholar 

  15. Gao S.Y., Shi Y.G., Zhang S.X., Jiang K., Yang S.X., Li Z.D., and Takayama-Muromachi, Biopolymer-assisted green synthesis of iron oxide nanoparticles and their magnetic properties, Journal of Physical Chemistry C, 2008, 112(28): 10398.

    Article  CAS  Google Scholar 

  16. Said A.A., and Hassan R.M., Thermal decomposition of some divalent metal alginate gel compounds, Polymer Degradation and Stability, 1993, 39(3): 393.

    Article  CAS  Google Scholar 

  17. Dodd A.C., A comparison of mechanochemical methods for the synthesis of nanoparticulate nickel oxide, Powder Technology, 2009, 196(1): 30.

    Article  CAS  Google Scholar 

  18. Hagelin-Weaver H.A.E., Weaver J.F., Hoflund G.B., Salaita G.N., Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment, Journal of Electron Spectroscopy and Related Phenomena, 2004, 134(2–3): 139.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingshan Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, Q., Guo, C., Sun, Y. et al. Preparation and characterization of NiO hollow fibers consisting of nanoparticles derived from alginate salt precursor. Rare Metals 30 (Suppl 1), 208–212 (2011). https://doi.org/10.1007/s12598-011-0270-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0270-0

Keywords

Navigation