Skip to main content
Log in

Rapid synthesis of Mn3O4 by in-situ redox method and its capacitive performances

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A quick and easy method to synthesize nanostructured Mn3O4 through an in-situ redox method was presented. KMnO4 was used as the precursor and chitosan was added during the process. The as-prepared materials were characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectra (FT-IR). The electrochemical properties of Mn3O4 based electrodes were systematically studied using cyclic voltammetry and chronopotentiometry in 1 M Na2SO4 aqueous solution electrolyte. It exhibited a high specific capacitance of 278 F/g at 2.5 mA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderman M., Advanced Automotive Batteries, The Ultracapacitor Opportunity Report, 2005.

  2. Conway B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York, 1999.

  3. Dong W., Rolison D.R., and Dunna B., Electrochemical properties of high surface area vanadium oxide aerogels, Electrochem. Solid-State Lett., 2000, 3(10): 457.

    Article  CAS  Google Scholar 

  4. Long J.W., Electrochemical capacitors empowering the 21st century, The Electrochemical Society Interface (Spring), 2008, 17(1): 33.

    CAS  Google Scholar 

  5. Zheng J.P., and Jow T.R., A new charge storage mechanism for electrochemical capacitors, J. Electrochem. Soc., 1995, 142(1): L6.

    Article  CAS  Google Scholar 

  6. Soudan P., Gaudet J., Guay D., Bélanger D., and Schulz R., Electrochemical properties of ruthenium-based nanocrystalline materials as electrodes for supercapacitors, Chem. Mater., 2002, 14(3): 1210.

    Article  CAS  Google Scholar 

  7. Sugimoto W., Iwata H., Yasunaga Y., Murakami Y., and Takasu Y., Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chem. Int. Ed., 2003, 42(34): 4092.

    Article  CAS  Google Scholar 

  8. Kim I.H., Kim J.H., Lee Y.H., and Kim K.B., Synthesis and characterization of electrochemically prepared ruthenium oxide on carbon nanotube film substrate for supercapacitor applications, J. Electrochem. Soc., 2005, 152(11): A2170.

    Article  Google Scholar 

  9. Ma S.B., Nam K.W., Yoon W.S., Yang X.Q., Ahn K.Y., Oh K.H., and Kim K.B., Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications, J. Power Sources, 2008, 178(1): 483.

    Article  CAS  Google Scholar 

  10. Komaba S., Ogata A., and Tsuchikawa T., Enhanced supercapacitive behaviors of birnessite, Electrochem. Commun., 2008, 10(10): 1435.

    Article  CAS  Google Scholar 

  11. An G.M., Yu P., Xiao M.J., Liu Z.M., Miao Z.J., Ding K.L., and Mao L.Q., Low-temperature synthesis of Mn3O4 nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemical capacitors, Nanotechnology, 2008, 19: 275709.

    Article  Google Scholar 

  12. Apte S.K., Naik S.D., Sonawane R.S., Kale B.B., Pavaskar N., Mandale A.B., and Das B.K., Nanosize Mn3O4 (Hausmannite) by microwave irradiation method, Mater. Res. Bull., 2006, 41(3): 647.

    Article  CAS  Google Scholar 

  13. Zhang Y.C., Qiao T., and Hu X.Y., Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment of γ-MnOOH nanowires, J. Solid State Chem., 2004, 177(11): 4093.

    Article  CAS  Google Scholar 

  14. Finocchio E., and Busca G., Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/ Al2O3, Catal. Today, 2001, 70(1–3): 213.

    Article  CAS  Google Scholar 

  15. Anilkumar M., and Ravi V., Synthesis of nanocrystalline Mn3O4 at 100 °C, Mater. Res. Bull., 2005, 40(4): 605.

    Article  CAS  Google Scholar 

  16. Bousquet-Berthelin C., and Stuerga D., Flash microwave synthesis of Mn3O4-hausmannite nanoparticles, Journal of Materials Science, 2005, 40: 253.

    Article  CAS  Google Scholar 

  17. Gorbenko O.Y., Graboy I.E., Amelichev V.A., Bosak A.A., Kaul A.R., Güttler B., Svetchnikov V.L., and Zandbergen H.W., The structure and properties of Mn3O4 thin films grown by MOCVD, Solid State Commun., 2002, 124(1–2): 15.

    Article  CAS  Google Scholar 

  18. Deans J.R., and Dixon B.G., Uptake of Pb2+ and Cu2+ by novel biopolymers, Water Res., 1992, 26(4): 469.

    Article  CAS  Google Scholar 

  19. Strand S. P., Vårum K.M., and Østgaard K., Interactions between chitosans and bacterial suspensions: adsorption and flocculation, Colloids and Surfaces B: Biointerfaces, 2003, 27(1): 71.

    Article  CAS  Google Scholar 

  20. Wang X.L., Yuan A.B., and Wang Y.Q., Supercapacitive behaviors and their temperature dependence of sol-gel synthesized nanostructured manganese dioxide in lithium hydroxide electrolyte, J. Power Sources, 2007, 172(2): 1007.

    Article  CAS  Google Scholar 

  21. Ananth M.V., Pethkar S., and Dakshinamurthi K., Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes—an FTIR study, J. Power Sources, 1998, 75(2): 278.

    Article  CAS  Google Scholar 

  22. Hu C.C., and Tsou T.W., Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Commun., 2002, 4(2): 105.

    Article  CAS  Google Scholar 

  23. Yan J., Fan Z.J., Wei T., Qian W.Z., Zhang M.L., and Wei F., Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes, Carbon, 2010, 48(13): 3825.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, S., Jia, W. & Xu, M. Rapid synthesis of Mn3O4 by in-situ redox method and its capacitive performances. Rare Metals 30 (Suppl 1), 81–84 (2011). https://doi.org/10.1007/s12598-011-0243-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0243-3

Keywords

Navigation