Skip to main content

Advertisement

Log in

Preparation of cellulose acetate/PP composite membrane for vanadium redox flow battery applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Vanadium Redox Battery (VRB) is one of the promising electrical energy storage systems. The charge/discharge efficiency of VRB is affected by the permeability of vanadium ions, the water or acid uptake, and the ionic conductivity. In this study, a cellulose acetate/polypropylene (CA/PP) composite nano-porous membrane was prepared. The solvent/non-solvent method was used to form the CA membrane. It was supported on a PP fabric. The polyethylene glycol (PEG) was a pore-forming agent in the CA solution. This composite membrane had shown good ionic conductivity and low permeation to the vanadium ion as the commercial proton conducting membrane (Nafion). However, the membrane cost is expected to be one order of magnitude lower than the cost of Nafion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Leon C.P., Frias-Ferrer A., Gonzalez-Garcia J., Szanto D.A., and Walsh F.C., Redox flow cells for energy conversion, J. Power Sources, 2006, 160: 716.

    Article  Google Scholar 

  2. Tokuda N., Kanno T., Hara T., Shigematsu T., Tsutsui Y., Ikeuchi A., Itou T., and Kumamoto T., Development of a redox flow battery system, SEI Technical Review, 2000, 50: 88.

    Google Scholar 

  3. Huang K.L., Li X.G., Liu S.Q., Tan N., and Chen L.Q., Research progress of vanadium redox flow battery for energy storage in China, Renewable Energy, 2008, 33: 186.

    Article  CAS  Google Scholar 

  4. Zhao P., Zhang H., Zhou H., Chen J., Gao S., and Yi B., Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack, Journal of Power Sources, 2006, 162: 1416.

    Article  CAS  Google Scholar 

  5. Zhu S., Sun W., Wang Q., Yin H., and Wang B., Review of R&d status of vanadium redox battery, Chemical Industry and Engineering Progress, 2007, 26(2): 207.

    CAS  Google Scholar 

  6. Joerissen L., Garche J., Fabjan Ch., and Tomazic G., Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems, J. Power Sources, 2004, 127: 98.

    Article  CAS  Google Scholar 

  7. Mohammadi T., and Skyllas-Kazacos M., Characterisation of novel composite membrane for redox flow battery application, J. Membrane Science, 1995, 98: 77.

    Article  CAS  Google Scholar 

  8. Mohammadi T., and Skyllas-Kazacos M., Preparation of sulfonated composite membrane for vanadium redox flow battery applications, J. Membrane Science, 1995, 107: 35.

    Article  CAS  Google Scholar 

  9. Hwang G-J., and Ohya H., Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery, J. Membrane Science, 1996, 120: 55.

    Article  CAS  Google Scholar 

  10. Mohammadi T., Chieng S.C., and Skyllas-Kazacos M., Water transport study across commercial ion exchange membrane in the vanadium redox flow battery, J. Membrane Science, 1997, 133: 151.

    Article  CAS  Google Scholar 

  11. Sukkar T., and Skyllas-Kazacos M., Water transfer behaviour across cation exchange membrane in the vanadium redox battery, J. Membrane Science, 2003, 222: 235.

    Article  CAS  Google Scholar 

  12. Sukkar T., and Skyllas-Kazacos M., Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery, J. Membrane Science, 2003, 222: 249.

    Article  CAS  Google Scholar 

  13. Tian B., Yan C.W., and Wang F.H., Proton conducting composite membrane from daramic/nafion for vanadium redox flow battery, J. Membrane Science, 2004, 234: 51.

    Article  CAS  Google Scholar 

  14. Qiu J., Li M., Ni J., Zhai M., Peng J., Xu L., Zhou H., Li J., and Wei G., Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions vanadium redox battery, J. Membrane Science, 2007, 297: 174.

    Article  CAS  Google Scholar 

  15. Luo Q., Zhang H., Chen J., Qian P., and Zhai Y., Modification of nafion membrane using interfacial polymerization for vanadium redox flow battery applications, J. Membrane Science, 2008, 311: 98.

    Article  CAS  Google Scholar 

  16. Teng X., Zhao Y., Xi J., Wu Z., Qiu X., and Chen L., Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in-situ sol-gel reactions, J. Membrane Science, 2009, 341: 149.

    Article  CAS  Google Scholar 

  17. Qiu J., Zhai M., Chen J., Wang Y., Peng J., Xu L., Li J., and Wei G., Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method, J. Membrane Science, 2009, 342: 215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan-Lin Hsueh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YC., Huang, SL., Yeh, CH. et al. Preparation of cellulose acetate/PP composite membrane for vanadium redox flow battery applications. Rare Metals 30 (Suppl 1), 22–26 (2011). https://doi.org/10.1007/s12598-011-0230-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0230-8

Keywords

Navigation