Skip to main content

Advertisement

Log in

Hybrid membranes with low permeability for vanadium redox flow batteries using in situ sol-gel process

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Vanadium redox flow batteries (VRFBs) have been researched as large energy storage systems due to their long cycle life, high energy efficiency, low cost, and flexible design. However, cation exchange membranes are permeable to the vanadium ions in aqueous acidic electrolyte, and vanadium ions crossover reduces the efficiency and capacity of VRFBs. To improve membrane selectivity, proton conducting inorganic materials are proposed for the modification of conventional membranes, e.g., Nafion. Clusters inside Nafion membrane are filled with inorganic materials using in situ sol-gel processes, and this results in homogeneous distribution of inorganic materials. Hybrid membranes with Nafion 115 (coded as HN115) exhibit comparable ionic conductivity and a 70% reduced permeability to vanadium ions compared with pristine Nafion 115 (coded as N115). The columbic and energy efficiencies of VRFBs with HN115 at 20mA·cm−2 exhibit higher values of 95% and 80% in their columbic and energy efficiencies, respectively; VRFBs with N115 exhibit 78% and 70%, respectively. The capacity performance is also improved when HN115 is used in VRFBs. The VRFBs with hybrid membranes (lower permeable membrane) show higher columbic efficiency than the VRFB with N115. HN115 exhibit similar columbic efficiency values of 95% over entire current ranges, which are almost unrelated to the current density. However, N115 shows a fluctuating and lower columbic efficiency of 75%, 88%, 93% at 20mA·cm−2, 40mA·cm−2, 80mA·cm−2, respectively. VRFB with N115 (high conductive membrane) exhibits lower voltage drops for discharging and higher energy efficiency at high current ranges. With these results, it is proposed that the energy efficiencies of VRFBs are compromised with membrane conductivity and permeability. The columbic efficiencies are more contributed by membrane permeability. The permeability properties are more dominant in low current density and the ionic conductivity is more effective in high current ranges. To obtain higher performance of VRFBs, the membrane design for selectivity should be considered according to the operation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Menictas and M. Skyllas-Kazacos, J. Appl. Electrochem., 41, 1223 (2011).

    Article  CAS  Google Scholar 

  2. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez, D. A. Szanto and F. C. Walsh, J. Power Sources, 160, 716 (2006).

    Article  Google Scholar 

  3. Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, Chem. Rev., 111, 3577 (2011).

    Article  CAS  Google Scholar 

  4. N. Armaroli and V. Balzani, Energy Environ. Sci., 4, 3193 (2011).

    Article  Google Scholar 

  5. G. Kear, A. A. Shah and F. C. Walsh, Int. J. Energy Res., 36, 1105 (2012).

    Article  CAS  Google Scholar 

  6. A. Parasuraman, T. M. Lim, C. Menictas and M. Skyllas-Kazacos, Electrochim. Acta, 101, 27 (2013).

    Article  CAS  Google Scholar 

  7. X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen and X. Qiu, J. Phys. Chem. B, 109, 20310 (2005).

    Article  CAS  Google Scholar 

  8. C. Yao, H. Zhang, T. Liu, X. Li and Z. Liu, J. Power Sources, 237, 19 (2013).

    Article  CAS  Google Scholar 

  9. N. Wang, S. Peng, Y. Li, H. Wang, S. Liu and Y. Liu, J. Solid State Electrochem., 16, 2169 (2012).

    Article  CAS  Google Scholar 

  10. S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang and M. Hickner, Electrochem. Commun., 12, 1650 (2010).

    Article  CAS  Google Scholar 

  11. S. Kim, T. B. Tighe, B. Schwenzer, J. Yan, J. Zhang, J. Liu, Z. Yang and M. A. Hickner, J. Appl. Electrochem., 41, 1201 (2011).

    Article  CAS  Google Scholar 

  12. X. Ling, C. Jia, J. Liu and C. Yan, J. Membr. Sci., 415-416, 306 (2012).

    Article  CAS  Google Scholar 

  13. D. Chen, S. Kim, L. Li, G. Yang and M. A. Hickner, RSC Adv., 2, 8087 (2012).

    Article  CAS  Google Scholar 

  14. J. Pan, S. Wang, M. Xiao, M. Hickner and Y. Meng, J. Membr. Sci., 443, 19 (2013).

    Article  CAS  Google Scholar 

  15. N. Wang, J. Yu, Z. Zhou, D. Fang, S. Liu and Y. Liu, J. Membr. Sci., 437, 114 (2013).

    Article  CAS  Google Scholar 

  16. C. Fujimoto, S. Kim, R. Stains, X. Wei, L. Li and Z. Yang, Electrochem. Commun., 20, 48 (2012).

    Article  CAS  Google Scholar 

  17. M. J. Jung, J. Parrondo, C. G. Arges and V. Ramani, J. Mater. Chem. A, 1, 10458 (2013).

    Article  CAS  Google Scholar 

  18. S. Zhang, B. Zhang, D. Xing and X. Jian, J. Mater. Chem. A, 1, 12246 (2013).

    Google Scholar 

  19. Z. Mai, H. Zhang, H. Zhang, W. Xu, W. Wei, H. Na and X. Li, ChemSusChem, 6, 328 (2013).

    Article  CAS  Google Scholar 

  20. D. Chen, M. A. Hickner, E. Agar and E. C. Kumbur, Appl. Mater. Interfaces, 5, 7559 (2013).

    Article  CAS  Google Scholar 

  21. J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen and X. Qiu, J. Mater. Chem., 18, 1232 (2008).

    Article  CAS  Google Scholar 

  22. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu and L. Chen, J. Membr. Sci., 341, 149 (2009).

    Article  CAS  Google Scholar 

  23. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu and L. Chen, J. Power Sources, 189, 1240 (2009).

    Article  CAS  Google Scholar 

  24. Z. Mai, H. Zhang, X. Li, S. Xiao and H. Zhang, J. Power Sources, 196, 5737 (2011).

    Article  CAS  Google Scholar 

  25. N. Wang, S. Peng, D. Lu, S. Liu, Y. Liu and K. Huang, J. Solid State Electrochem., 16, 1577 (2012).

    Article  CAS  Google Scholar 

  26. X. Teng, J. Dai, J. Su, Y. Zhu, H. Liu and Z. Song, J. Power Sources, 240, 131 (2013).

    Article  CAS  Google Scholar 

  27. X. Teng, C. Sun, J. Dai, H. Liu, J. Su and F. Li, Electrochim. Acta, 88, 725 (2013).

    Article  CAS  Google Scholar 

  28. Z. Li, J. Xi, H. Zhou, L. Liu, Z. Wu, X. Qiu and L. Chen, J. Power Sources, 237, 132 (2013).

    Article  CAS  Google Scholar 

  29. H. Kim and H. Chang, J. Membr. Sci., 288, 188 (2007).

    Article  CAS  Google Scholar 

  30. L. Yang, B. Tang and P. Wu, J. Membr. Sci., 467, 236 (2014).

    Article  CAS  Google Scholar 

  31. P. Alotto, M. Guarnieri and F. Moro, Renw. Sust. Energy Rev., 29, 325 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haekyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.M., Kim, H. Hybrid membranes with low permeability for vanadium redox flow batteries using in situ sol-gel process. Korean J. Chem. Eng. 32, 2434–2442 (2015). https://doi.org/10.1007/s11814-015-0077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0077-z

Keywords

Navigation