Skip to main content
Log in

Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge test. The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability. The maximum discharge capacity is 313 mAh·g−1, and there is no significant capacity decay from the second cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu D.S., Li W.S., Zuo X.X., Yuan Z.Z., and Huang Q.M., Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 < x < 1) by electrochemical impedance spectroscopy, J. Phys. Chem. C, 2007, 111(32): 12067.

    Article  CAS  Google Scholar 

  2. Xing L.D., Wang C.Y., Li W.S., Xu M.Q., Meng X.L., and Zhao S.F., Theoretical insight into oxidative decomposition of propylene carbonate in the lithium ion battery, J. Phys. Chem. B, 2009, 113(15): 5181.

    Article  CAS  PubMed  Google Scholar 

  3. Xu M.Q., Li W.S., Zuo X.X., Liu J.S., and Xu X., Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive, J. Power Sources, 2007, 174(2): 705.

    Article  CAS  Google Scholar 

  4. Zuo X.X., Xu M.Q., Li W.S., Su D.G., and Liu J.S., Electrochemical reduction of 1,3-propane sultone on graphite electrode and its application in Li-ion battery, Electrochem. Solid State Lett., 2006, 9(4): A196.

    Article  CAS  Google Scholar 

  5. Ortiz G.F., Hanzu I., Djenizian T., Lavela P., Tirado J.L. and Knauth P., Alternative li-ion battery electrode based on self-organized titania nanotubes, Chem. Mater, 2009, 21(1): 63.

    Article  CAS  Google Scholar 

  6. Jiang C., Wei M.D., Qi Z.M., Kudo T., Honma I., and Zhou H.S., Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode, J. Power Sources, 2007, 166(1): 239.

    Article  CAS  Google Scholar 

  7. Wagemaker M., Borghols W. J. H., and Mulder F. M., Large impact of particle size on insertion reactions. A case for anatase LixTiO, J. Am. Chem. Soc., 2007, 129(14): 4323.

    Article  CAS  PubMed  Google Scholar 

  8. Wang K.X., Wei M.D., Morris M.A., Zhou H.S., and Holmes J.D., Mesoporous titania nanotubes: Their preparation and application as electrode materials for rechargeable lithium batteries, Adv. Mater., 2007, 19(19): 3016.

    Article  CAS  Google Scholar 

  9. Sung C.C., Fung K.Z., Hung I.M., and Hon M.H., Synthesis of highly ordered and worm-like mesoporous TiO2 assisted by tri-block copolymer, Solid State Ionics, 2008, 179(27): 1300.

    Article  CAS  Google Scholar 

  10. Jun Y.W., Casula M.F., Sim J.H., Kim S.Y., Cheon J., and Alivisatos A.P., Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals, J. Am. Chem. Soc., 2003, 125(51): 15981.

    Article  CAS  PubMed  Google Scholar 

  11. Bao S.J., Bao Q.L., Li C.M., and Dong Z.L., Novel porous anatase TiO2 nanorods and their high lithium electroactivity, Electrochem. Commun., 2007, 9(5): 1233.

    Article  CAS  Google Scholar 

  12. Wang J., Polleux J., Lim J., and Dunn B., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C, 2007, 111(40): 14925.

    Article  CAS  Google Scholar 

  13. Wang J.P., Bai Y., Wu M.Y., Yin J., and Zhang W.F., Preparation and electrochemical properties of TiO2 hollow spheres as an anode material for lithium-ion batteries, J. Power Sources, 2009, 191(2): 614.

    Article  CAS  Google Scholar 

  14. Krtil P., Fattakhova D., Kavan L., Burnside S., and Gratzel M., Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes, Solid State Ionics, 2000, 135(1): 101.

    Article  CAS  Google Scholar 

  15. Sudant G., Baudrin E., Larcher D., and Tarascon J.M., Electrochemical lithium reactivity with nanotextured anatase-type TiO2, J. Mater. Chem., 2005, 15(12): 1263.

    CAS  Google Scholar 

  16. Lindstrom H., Sodergrem S., Solbrand A., Rensmo H., Hjelm J., Hagfeldt A., and Lindquist S. E., Li+ ion insertion in TiO2 (anatase): 2. Voltammetry on nanoporous films, J. Phys. Chem. B, 1997, 101(39): 7717.

    Article  Google Scholar 

  17. Kim J. and Cho J., Rate characteristics of anatase TiO2 nanotubes and nanorods for lithium battery anode materials at room temperature, J. Electrochem. Soc., 2007, 154(6): A542.

    Article  CAS  MathSciNet  Google Scholar 

  18. Kavan L., Kalbac M., Zukalova M., Exnar I., Lorenzen V., Nesper R., and Graetzel M., Lithium storage in nanostructured TiO2 made by hydrothermal growth, Chem. Mater., 2004, 16(3): 477.

    Article  CAS  Google Scholar 

  19. Stashans A., Lunell S., and Bergstrom R., Theoretical study of lithium intercalation in rutile and anatase, Phys. Rev. B, 1996, 53(1): 159.

    Article  CAS  ADS  Google Scholar 

  20. Armstrong A.R., Armstrong G., Canales J., Garcia R., and Bruce P.G., Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 2005, 17(7): 862.

    Article  CAS  Google Scholar 

  21. Moriguchi I., Hidaka R., Yamada H., and Kudo T., Li-intercalation property of mesoporous anatase-TiO2 synthesized by bicontinuous microemulsion-aided process, Solid State Ionics, 2005, 176(31): 2361.

    Article  CAS  Google Scholar 

  22. Wang Q., Wen Z.H., and Li J.H., Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures, Inorg. Chem., 2006, 45(17): 6944.

    Article  CAS  PubMed  Google Scholar 

  23. Song B., Liu S.W., Jian J.K., Lei M., Wang X.J., Li H., Yu J.G., and Chen X.L., Electrochemical properties of TiO2 hollow microspheres from a template-free and green wet-chemical route, J. Power Sources, 2008, 180(2): 869.

    Article  CAS  Google Scholar 

  24. Fu L.J., Liu H., Zhang H.P., Li C., Zhang T., Wu Y.P., and Wu H.Q., Novel TiO2/C nanocomposites for anode materials of lithium ion batteries, J. Power Sources, 2006, 159(1): 219.

    Article  CAS  Google Scholar 

  25. Levi M.D. and Aurbach D., Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium, J. Phys. Chem. B, 1997, 101(23): 4630.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, J., Tan, C., Li, W. et al. Preparation of anatase TiO2 with assistance of surfactant OP-10 and its electrochemical properties as an anode material for lithium ion batteries. Rare Metals 29, 505–510 (2010). https://doi.org/10.1007/s12598-010-0157-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-010-0157-5

Keywords

Navigation