Skip to main content
Log in

Surfactant-mediated synthesis of ZnCo2O4 powders as a high-performance anode material for Li-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The synthesis as well as the electrochemical properties study of highly crystalline ZnCo2O4 powders is presented. ZnCo2O4 powders with a particle diameter of 15–35 nm have been successfully prepared with the surfactant-mediated method. The thorough structural characterization including X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to examine the morphology and the microstructure of the final product. The as-synthesized powders were used as anode materials for lithium-ion battery, whose charge–discharge properties, cyclic voltammetry, and cycle performance were examined and revealed very good properties. Galvanostatic cycling of ZnCo2O4 powders in the voltage range 0.005–3.0 V versus Li at 60 mA g−1 maintained charge and discharge capacities of 1,308 and 1,336 mAh g−1 after 40 cycles when cycled at 25 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hug YS, Demir-Cakan R, Titirici MM, Müller JO, Schlögl R, Antonietti M, Maier J (2008) Angew Chem Int Ed 47:1645–1649

    Article  Google Scholar 

  2. Tomić-Tucaković B, Majstorović D, Jelić D, Mentus S (2012) Thermochim Acta 541:15–24

    Article  Google Scholar 

  3. Gu YX, Jian FF, Wang X (2008) Thin Solid Films 517:652–655

    Article  CAS  Google Scholar 

  4. Liu HC, Yen SK (2007) J Power Sources 166:478–484

    Article  CAS  Google Scholar 

  5. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Adv Funct Mater 17:2855–2861

    Article  CAS  Google Scholar 

  6. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM (2006) Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  7. Luo W, Hu XL, Sun YM, Huang YH (2012) J Mater Chem 22:8916–8921

    Article  CAS  Google Scholar 

  8. Ai CC, Yin M, Wang C, Sun J (2004) J Mater Sci 39:1077–1079

    Article  CAS  Google Scholar 

  9. Reddy MV, Kenrick KYH, Wei TY, Chong GY, Leong GH, Chowdari BVR (2011) J Electrochem Soc 158:A1423–A1430

    Article  CAS  Google Scholar 

  10. Mohamed SG, Hung TF, Chen CJ, Chen CK, Hu SF, Liu RS, Wang KC, Xing XK, Liu HM, Liu AS, Hsieh MH, Lee BJ (2013) RSC Adv 3:20143–20149

    Article  CAS  Google Scholar 

  11. Liu B, Wang XF, Liu BY, Wang QF, Tan DS, Song WF, Hou XJ, Chen D, Shen GZ (2013) Nano Res 6:525–534

    Article  CAS  Google Scholar 

  12. Liu HW, Wang J (2013) Electrochim Acta 92:371–375

    Article  CAS  Google Scholar 

  13. Hung TF, Mohamed SG, Shen CC, Tsai YQ, Chang WS, Liu RS (2013 ) Nanoscale 5:12115–12119

    Article  CAS  Google Scholar 

  14. Davis M, Gümeci C, Black B, Korzeniewski C, Weeks LH (2012) RSC Adv 2:2061–2066

    Article  CAS  Google Scholar 

  15. Qiu YC, Yang SH, Deng H, Jin LM, Li WS (2010) J Mater Chem 20:4439–4444

    Article  CAS  Google Scholar 

  16. Du N, Xu YF, Zhang H, Yu JX, Zhai CX, Yang DR (2011) Inorg Chem 50:3320–3324

    Article  CAS  Google Scholar 

  17. Hu LL, Qu BH, Li CC, Chen YJ, Mei L, Lei DN, Chen LB, Li QH, Wang TH (2013) J Mater Chem A 1:5596–5602

    Article  CAS  Google Scholar 

  18. Dixit SG, Mahadeshwar AR, Haram SK (1998) Colloids Surf A 133:69–75

    Article  CAS  Google Scholar 

  19. Wang YD, Ma CL, Sun XD, Li HD (2002) Inorg Chem Commun 5:751–755

    Article  CAS  Google Scholar 

  20. Wang YD, Ma CL, Sun XD, Li HD (2002) Nanotechnology 13:565–569

    Article  CAS  Google Scholar 

  21. Belliard F, Irvine JTS (2001) J Power Sources 97–98:219–222

    Article  Google Scholar 

  22. Zhang CQ, Tu JP, Yuan YF (2007) J Electrochem Soc 154:A65–A69

    Article  CAS  Google Scholar 

  23. Liu HC, Yen SK (2007) J Power Sources 1 66:478–484

    Article  Google Scholar 

  24. Badway F, Plitz I, Grugeon S, Laruelle S, Dolle M, Gozdz AS, Tarascon JM (2002) Electrochem Solid-State Lett 5:A115–A118

    Article  CAS  Google Scholar 

  25. Grugeon S, Laruelle S, Dupont L, Tarascon JM (2003) Solid State Sci 5:895–904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Project (2013CB934001), the Department of Science and Technology of Yunnan Province via the Key Project for the Science and Technology (Grant No. 2011FA001), the National Natural Science Foundation of China (Grant No. 51262029, 51172024, 51372022), the Key Project of the Department of Education of Yunnan Province (ZD2013006), and the Program for Excellent Young Talents, Yunnan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yude Wang or Li-Zhen Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, M., Chen, G. et al. Surfactant-mediated synthesis of ZnCo2O4 powders as a high-performance anode material for Li-ion batteries. Ionics 21, 623–628 (2015). https://doi.org/10.1007/s11581-014-1221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1221-1

Keywords

Navigation