Skip to main content
Log in

Microstructure and electrical properties of Ti-modified (Na0.5K0.5)(Ti x Nb1−x )O3 lead-free piezoelectric ceramics

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti-Modified (Na0.5K0.5)(Ti x Nb1−x )O3 (NKNT) piezoelectric ceramics were fabricated by double-layer buried powder process at 1020°C for 2 h. The microstructures, and piezoelectric and dielectric properties of the lead-free NKNT ceramics were investigated. X-ray diffraction results indicated that Ti4+ had diffused into the (Na0.5K0.5)NbO3 lattices to form a solid solution with a perovskite structure. The introducing of Ti into the (Na0.5K0.5)NbO3 solid solution effectively reduced the sintering temperature and densified the microstructure with a decreased grain size. The highest relative density reached more than 90%. The highest piezoelectric dielectric coefficient d 33 and planar mode electromechanical coupling coefficient k p were 110 pC/N and 19.5%, which were obtained in the NKNT ceramic with 1 mol% Ti. The piezoelectric properties of the NKNT ceramics were enhanced by aging in air for a period of time owing to the compensation of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain R., Chauhanauhan A.K.S., Gupta V., and Sreenivas K., Piezoelectric properties of nonstoichiometric Sr1−x Bi2+2x/3Ta2O9 ceramics, J. Appl. Phys., 2005, 97: 124101.

    Google Scholar 

  2. Li W., Gu J., Song C., Su D., and Zhu J., B-site doping effect on ferroelectric property of bismuth titanate ceramic, J. Appl. Phys., 2005, 98: 114104.

    Google Scholar 

  3. Xie R., Akimune Y., Matsuo K., Sugiyama T., Hirosaki N., and Sekiya T., Dielectric and ferroelectric properties of tetragonal tungsten bronze Sr2−x CaxNaNb5O15 (x = 0.05–0.35) ceramics, Appl. Phys. Lett., 2002, 80: 835.

    Article  ADS  CAS  Google Scholar 

  4. Yu Z., Ang C., Guo R., and Bhalla A.S, Piezoelectric and strain properties of Ba(Ti1−x Zrx)O3 ceramics, J. Appl. Phys., 2002, 92: 1489.

    Article  ADS  CAS  Google Scholar 

  5. Zhao P., Zhang B.P., and Li J.F, Enhancing piezoelectric d 33 coefficient in Li/Ta-codoped lead-free (Na,K)NbO3 ceramics by compensating Na and K at a fixed ratio, Appl. Phys. Lett., 2007, 91: 172901.

    Google Scholar 

  6. Zhao P, Zhang B.P., and Li J.F, High piezoelectric d 33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature, Appl. Phys. Lett., 2007, 90: 242909.

    Google Scholar 

  7. Matthias B.T. and Remeika J., Dielectric properties of sodium and potassium niobates, Phys. Rev., 1951, 82: 727.

    Article  ADS  CAS  Google Scholar 

  8. Zhang B.P., Li J.F., Wang K., and Zhang H, Compositional dependence of piezoelectric properties in NaxK1−x NbO3 lead-free ceramics prepared by spark plasma sintering, J. Am. Ceram. Soc., 2006, 89: 1605.

    Article  CAS  Google Scholar 

  9. Evelyn H., Matthew D., and Dragan D., Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics, Appl. Phys. Lett., 2005, 87: 182905.

    Google Scholar 

  10. Guo Y.P., Kakimoto K., and Ohsato H., Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics, Appl. Phys. Lett., 2004, 85: 4121–4123.

    Article  ADS  CAS  Google Scholar 

  11. Zang G.Z., Wang J.F., and Chen H.C., Perovskite (Na0.5K0.5)1−x (LiSb)xNb1−x O3 lead-free piezoceramics, Appl. Phys. Lett., 2006, 88: 212908.

    Google Scholar 

  12. Zhao P., Zhang B.P., and Li J.F. Enhanced dielectric and piezoelectric properties in LiTaO3-doped lead-free (K,Na)NbO3 ceramics by optimizing sintering temperature, Scripta Mater., 2007, 2008, 58: 429.

    Google Scholar 

  13. Zhen Y.H. and Li J.F, Normal sintering of (K,Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties, J. Am. Ceram. Soc., 2006, 89: 3669.

    Article  CAS  Google Scholar 

  14. Saito Y., Takkao H., and Tani T., Lead-Free piezoceramics, Nature, 2004, 432: 84.

    Article  PubMed  ADS  CAS  Google Scholar 

  15. Haertling G.H., Properties of hot-pressing ferroelectric alkali niobate ceramics, J. Am. Ceram. Soc., 1967, 50: 329.

    Article  CAS  Google Scholar 

  16. Zhang L.M., Zhang B.P., Li J.F., Wang K., and Zhang H.L., Normal sintering of lead-free piezoelectric potassium sodium niobate and its electrical properties, J. Chin. Ceram. Soc. (in Chinese), 2007, 35: 1.

    Google Scholar 

  17. Yoon S.J., Joshi A., and Uchino K., Effect of additives on the electromechanical properties of Pb(Zr,Ti)O3-Pb(Y2/3W1/3)O3 ceramics, J. Am. Ceram. Soc., 1997, 80: 1035.

    CAS  Google Scholar 

  18. Okazaki K. and Nagata K, Effects of grain size and porosity on electricaland optical properties of PLZT ceramics, J. Am. Ceram. Soc., 1973, 56: 82.

    Article  CAS  Google Scholar 

  19. Takagi K., Kikuchi S., Li J.F., Okamura H., Watanabe R., and Kawasaki A., Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying, J. Am. Ceram. Soc., 2004, 87: 241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boping Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Zhang, B., Zhao, P. et al. Microstructure and electrical properties of Ti-modified (Na0.5K0.5)(Ti x Nb1−x )O3 lead-free piezoelectric ceramics. Rare Metals 28, 142–146 (2009). https://doi.org/10.1007/s12598-009-0028-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0028-0

Keywords

Navigation