Skip to main content
Log in

Synthesis and characterization of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 by wet chemical route

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 was prepared by wet chemical route. The phase, surface morphology, and electrochemical properties of the prepared powders were characterized by X-ray diffraction, scanning electron micrograph, and galvanostatic charge-discharge experiments. Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 has similar X-ray diffraction patterns as LiMn2O4. The corner and border of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 particles are not as clear as the uncoated one. The two powders show similar values of lithium-ion diffusion coefficient. When cycled at room temperature and 55°C for 40 times at the charge-discharge rate of 0.2C, Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 shows the capacity retentions of 98.2% and 93.9%, respectively, which are considerably higher than the values of 85.4% and 79.1% for the uncoated one. Both the capacity retention differences between Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 and LiMn2O4 cycling at room temperature and 55°C become larger with the increase of charge-discharge rate. When the charge-discharge rate reaches 2C, the capacity retention of LATP-coated LiMn2O4 becomes 8.4% higher than the uncoated LiMn2O4 for room temperature cycling, and it becomes 11.1% higher than the latter when cycled at 55°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang C.H., Dou S.X., Liu H.K., Ichihara M., and Zhou H.S., Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction, J. Power Sources, 2007, 172: 410.

    Article  CAS  Google Scholar 

  2. Cabana J., Valdes S., Palacin T., Oro-Sole M.R., Fuertes J., Marban A., and Fuertes G., Enhanced high rate performance of LiMn2O4 spinel nanoparticles synthesized by a hard-template route, J. Power Sources, 2007, 166: 492.

    Article  CAS  Google Scholar 

  3. Zhao M.S. and Song X.P., Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material, J. Power Sources, 2007, 164: 822.

    Article  CAS  Google Scholar 

  4. Amatucci G.G., Schmutz C.N., Blyr A., Sigala C., Gozdz A.S., Larcher D., and Tarascon J.M., Materials’ effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries, J. Power Sources, 1997, 69: 11.

    Article  CAS  Google Scholar 

  5. Wohlfahrt-Mehrens M., Vogler C., and Garche J., Aging mechanisms of lithium cathode materials, J. Power Sources, 2004, 127: 58.

    Article  CAS  Google Scholar 

  6. Xia Y., Zhou Y., and Yoshio M., Capacity fading on cycling of 4 V Li/LiMn2O4 cells, J. Electrochem. Soc., 1997, 144: 2593.

    Article  CAS  Google Scholar 

  7. Lee K.S., Myung S.T., Bang H.J., Chung S., and Sun Y.K., Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M = Ni, Mg, Al) spinel and its application for lithium secondary battery cathode, Electrochim. Acta, 2007, 52: 5201.

    Article  CAS  Google Scholar 

  8. Eftekhari A., Moghaddam A.B., Yazdani B., and Moztarzadeh F., Effects of metal source in metal substitution of lithium manganese oxide spinel, Electrochim. Acta, 2006, 52: 1491.

    Article  CAS  Google Scholar 

  9. Shi S., Ouyang C., Wang D.S., Chen L., and Huang X., The effect of cation doping on spinel LiMn2O4: a first-principles investigation, Solid State Commun., 2003, 126: 531.

    Article  ADS  CAS  Google Scholar 

  10. Gnanaraj J.S., Pol V.G., Gedanken A., and Aurbach D., Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method, Electrochem. Commun., 2003, 5: 940.

    Article  CAS  Google Scholar 

  11. Ha H.W., Yun N.J., and Kim K., Improvement of electrochemical stability of LiMn2O4 by CeO2 coating for lithium-ion batteries, Electrochim. Acta, 2007, 52: 3236.

    Article  CAS  Google Scholar 

  12. Liu H., Cheng C., Zong Q., and Zhang K., The effect of ZnO coating on LiMn2O4 cycle life in high temperature for lithium secondary batteries, Mater. Chem. Phys., 2007, 101: 276.

    Article  ADS  CAS  Google Scholar 

  13. Wu X.M., Li X.H., Wang S.W., Wang Z., Zhang Y.H., Xu M.F., and He Z.Q., Preparation and characterization of lithium-ion-conductive Li1.3Al0.3Ti1.7(PO4)3 thin films by the solution deposition, Thin Solid Films, 2003, 425: 103.

    Article  ADS  CAS  Google Scholar 

  14. Fu Z.W. and Qin Q.Z., Electrochemical and electrochromic properties of niobium oxide thin films fabricated by pulsed laser deposition, J. Electrochem. Soc., 1999, 146: 3914.

    Article  CAS  Google Scholar 

  15. Jang D.H., Shin Y.J., and Oh S.M., Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells, J. Electrochem. Soc., 1996, 143: 2204.

    Article  CAS  Google Scholar 

  16. Aurbach D., Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, 2000, 89: 206.

    Article  CAS  Google Scholar 

  17. Wang E., Ofer D., Bowden W., Iltchev N., Moses R., and Brandt K., Stability of lithium ion spinel cells. III. Improved life of charged cells, J. Electrochem. Soc., 2000, 147: 4023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Li, R., Chen, S. et al. Synthesis and characterization of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 by wet chemical route. Rare Metals 28, 122–126 (2009). https://doi.org/10.1007/s12598-009-0024-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0024-4

Keywords

Navigation