Skip to main content
Log in

Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, La2O3 is synthesized by combustion method and then subjected to ultrafine ball milling to obtain La2O3 nanoparticles. In neopentyl glycol, La2O3 nanoparticles are coated on the surface of spinel LiMn2O4 ultimately obtaining La2O3 coating contents of 1.5, 3, 4.5, and 6 wt%. XRD characterization reveals that the nano La2O3 exhibits a favorable crystalline intensity, without impurities and the crystalline peak of La2O3 can be observed when the coating content is of up to 6 wt%. Successful deposition of a thin layer of La2O3 on the LiMn2O4 surface is confirmed by scanning electron microscopy, transmission electron microscopy, X-ray spectrum elemental plane scanning, and line scanning. Furthermore, inductively coupled plasma emission spectrography and electrochemical impedance spectroscopy analyses show that the nano-La2O3 coating significantly relieves the dissolution of Mn in LiMn2O4 materials, and also improves the electro-conductivity. The electrochemical performances of the coated LiMn2O4 samples are also investigated in this work. Compared with the pristine LiMn2O4, the LiMn2O4 coated with 3 wt% La2O3 exhibits a higher rate capability and better reversibility, exhibiting 103.5 and 90.6 mAh g−1 at 5 and 10 °C, respectively. After 100 cycles at 60 and 1 °C, the 3 wt% nano-La2O3-coated sample still exhibits a high-capacity retention of 91.68%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dunn B, Kamath H, Tarascon JM (2011) Science 334:928–935

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  3. Xu WM, Yuan AB, Tian L, Wang YQ (2011) J Appl Electrochem 41:453–460

    Article  Google Scholar 

  4. Zhang K, Han XP, Hu Z, Zhang XL, Tao ZL, Chen J (2015) Chem Soc Rev 44:699–728

    Article  Google Scholar 

  5. Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J (2011) Energy Environ Sci 4:1621–1633

    Article  CAS  Google Scholar 

  6. Cupid DM, Lehmann T, Bergfeldt T, Berndt H, Seifert HJ (2013) J Mater Sci 48:3395–3403

    Article  CAS  Google Scholar 

  7. Zhao M, Song X, Wang F, Dai W, Lu X (2011) Electrochim Acta 56:5673–5678

    Article  CAS  Google Scholar 

  8. Lee MJ, Lee S, Oh P, Kim Y, Cho J (2014) Nano Lett 14:993–999

    Article  CAS  Google Scholar 

  9. Jiang CH, Tang ZL, Wang ST, Zhang ZT (2017) J Power Sources 357:144–148

    Article  CAS  Google Scholar 

  10. Peng K, Peng TF (2014) Ceram Int 40:15345–15349

    Article  CAS  Google Scholar 

  11. Stiaszny B, Ziegler JC, Kraub EE, Schmidt JP, Ivers-Tiffée E (2014) J Power Sources 251:439–450

    Article  CAS  Google Scholar 

  12. Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) Nano Lett 13:2036–2040

    Article  CAS  Google Scholar 

  13. Lee KT, Jeong S, Cho J (2013) Acc Chem Res 46:1161–1170

    Article  CAS  Google Scholar 

  14. Wu F, Yushin G (2017) Energy Environ Sci 10:435–459

    Article  CAS  Google Scholar 

  15. Waller GH, Brooke PD, Rainwater BH, Lai SY, Hu R, Ding Y, Alamgir FM, Sandhage KH, Liu ML (2016) J Power Sources 306:162–170

    Article  CAS  Google Scholar 

  16. Liu DQ, Liu XQ, He ZZ (2007) J Alloys Compd 43:6387–6391

    Google Scholar 

  17. Zhang CC, Liu XY, Su QL, Wu JH, Huang T, Yu AS (2017) ACS Sustain Chem Eng 5:640–647

    Article  CAS  Google Scholar 

  18. Hu SK, Cheng GH, Cheng MY, Hwang BJ, Santhanam R (2009) J Power Sources 188:564–569

    Article  CAS  Google Scholar 

  19. Jin NC, Ying JR, Jiang CY, Wan CR (2013) J Funct Mater 28:133–138

    Google Scholar 

  20. Qing CB, Bai Y, Yang JM, Zhang WF (2011) Electrochimi Acta 56:6612–6618

    Article  CAS  Google Scholar 

  21. Li JL, Zhu YQ, Wang L, Cao CB (2014) ACS Appl Mater Interfaces 6:18742–18750

    Article  CAS  Google Scholar 

  22. Noh HK, Park HS, Jeong HY, Lee SU, Song HK (2014) Angew Chemie Int Ed 53:5059–5063

    CAS  Google Scholar 

  23. Tron A, Park YD, Mun J (2016) J Power Sources 325:360–364

    Article  CAS  Google Scholar 

  24. Zhao S, Bai Y, Chang Q, Yang Y, Zhang W (2013) Electrochim Acta 108:727–735

    Article  CAS  Google Scholar 

  25. Wang HE, Qian D, Lu ZG, Li YK (2012) J Alloys Compd 517:186–191

    Article  CAS  Google Scholar 

  26. Mohan P, Kalaignan GP (2014) Ceram Int 40:1415–1421

    Article  CAS  Google Scholar 

  27. Zhao J, Wang Y (2013) Nano Energy 2:882–889

    Article  CAS  Google Scholar 

  28. Zhang ZJ, Chou SL, Gu QF, Liu HK, Li HJ, Ozawa K, Wang JZ (2014) ACS Appl Mater Interfaces 6:22155–22165

    Article  CAS  Google Scholar 

  29. Zhao SZ, Zhou H, Zhou T, Zhang ZH, Lin PY, Ren LQ (2013) Corros Sci 67:75–81

    Article  CAS  Google Scholar 

  30. Fan HQ, Li SY, Zhao ZC, Wang H, Shi ZC (2011) Corros Sci 53:3821–3831

    Article  CAS  Google Scholar 

  31. Arumugam D, Kalaignan GP (2010) Mater Res Bull 45:1825–1831

    Article  CAS  Google Scholar 

  32. Feng L, Wang S, Han L, Qin X, Wei H, Yang Y (2012) Mater Lett 78:116–119

    Article  CAS  Google Scholar 

  33. Nowicki W, Piskuła ZS, Kuźma P, Kirszensztejn P (2017) J Sol-Gel Sci Technol 82:574–580

    Article  CAS  Google Scholar 

  34. Niasaria MS, Hosseinzadeh G, Davar F (2011) J Alloys Compd 509:4098–4103

    Article  Google Scholar 

  35. Hu C, Liu H, Dong W, Zhang Y, Bao G, Lao C, Wang ZL (2007) Adv Mater 19:470–474

    Article  CAS  Google Scholar 

  36. Shaju KM, Bruce PG (2008) Chem Mater 20:5557–5562

    Article  CAS  Google Scholar 

  37. Guo CX, Wang M, Chen T, Lou XW, Li CM (2011) Adv Energy Mater 1:736–741

    Article  CAS  Google Scholar 

  38. Kim JS, Kim K, Cho W, Shin WH, Kanno R, Choi JW (2012) Nano Lett 12:6358–6365

    Article  CAS  Google Scholar 

  39. Zhou Q, Zhang H, Chang F, Li H, Pan H, Xue W, Hu DY, Yang S (2015) J Ind Eng Chem 31:385–392

    Article  CAS  Google Scholar 

  40. Huang P, Zhao YH, Zhang J, Zhu Y, Sun YH (2013) Nanoscale 5:10844–10848

    Article  CAS  Google Scholar 

  41. Hunter JC (1981) J Solid State Chem 39:142–147

    Article  CAS  Google Scholar 

  42. Jang DH, Oh SM (1997) J Electrochem Soc 144:3342–3348

    Article  CAS  Google Scholar 

  43. Feng XY, Zhang JX, Yin LW (2016) Powder Technol 287:77–81

    Article  CAS  Google Scholar 

  44. Zhang QT, Xie XL, Fan WF, Wang XM (2016) Ionics 22:2273–2280

    Article  CAS  Google Scholar 

  45. Feng XY, Zhang JX, Yin LW (2016) Mater Res Bull 74:421–424

    Article  CAS  Google Scholar 

  46. Hao X, Lin X, Lu W, Bartlett BM (2014) ACS Appl Mater Interfaces 6:10849–10857

    Article  CAS  Google Scholar 

  47. Cho MY, Roh KC, Park SM, Lee JW (2011) Mater Lett 65:2011–2014

    Article  CAS  Google Scholar 

  48. Lee S, Jeong M, Cho J (2013) Adv Energy Mater 3:1623–1629

    Article  CAS  Google Scholar 

  49. Shi Y, Chou SL, Wang JZ, Wexler D. Li HJ, Liu HK, Wu Y (2012) J Mater Chem 22:16465–16470

    Article  CAS  Google Scholar 

  50. Banerjee A, Shilina Y, Ziv B, Ziegelbauer JM, Luski S, Aurbach D, Halalay IC (2017) J Am Chem Soc 139:1738–1741

    Article  CAS  Google Scholar 

  51. Shilina Y, Ziv B, Meir A, Banerjee A, Ruthstein S, Luski S, Aurbach D, Halalay IC (2017) Anal Chem 88:4440–4447

    Article  Google Scholar 

  52. Peng ZD, Jiang QL, Du K, Wang WG, Hu GR, Liu YX (2010) J Alloys Compd 493:640–644

    Article  CAS  Google Scholar 

  53. Lee S, Cho Y, Song HK, Lee KT, Cho J (2012) Angew Chemie Int Ed 51:8748–8752

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Natural Science Foundation of China (Nos. 51604132, 51601081, and 51764029) and Provincial Natural Science Foundation of Yunnan (No.2017FB085) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Li or Yingjie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, P., Zhang, M. et al. Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature. J Appl Electrochem 48, 135–145 (2018). https://doi.org/10.1007/s10800-017-1136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1136-4

Keywords

Navigation