Skip to main content
Log in

A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, a novel dual-guided microstructured fiber supporting orbital angular momentum (OAM) mode and linear polarization (LP) mode transmission is proposed to solve the high-volume data transmission. A variety of parameters of the fiber are considered comprehensively under different conditions by using the full-vector finite element method. The results show that the fiber can support 30 OAM modes and 2 LP modes over the whole C wavelength band by making full use of the air-holes to isolate electromagnetic field. The crosstalk between two channels is lower than that previously reported, and the total dispersion is nearly zero and flat. For instance, the isolation parameter of the EH71 mode reaches up to 86.02 dB and the dispersion coefficient varies from −  0.26 to 1.62 ps/(km nm). The large index difference between core and cladding is beneficial to low crosstalk. In addition, this fiber is easier to fabricate, because the preform needs only stacking technique to adjust the structure geometry size. This fiber can be used in short-distance and large-capacity transmission system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Zhang, Z. Wu, T. Huang, X. Shao, P. Shum, Modes effective refractive index difference measurement in few-mode optical fiber. Procedia Eng. 140, 77–84 (2016)

    Article  Google Scholar 

  2. T. Mizuno, H. Takara, K. Shibahara, A. Sano, Y. Miyamoto, Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems. J. Lightw. Technol. 140, 1484–1493 (2016)

    Article  ADS  Google Scholar 

  3. C. Chen, G. Zhou, G. Zhou, M. Xu, Z. Hou, C. Xia et al., A multi-orbital-angular-momentum multi-ring micro-structured fiber with ultra-high-density and low-level crosstalk. Opt. Commun. 368, 27–33 (2016)

    Article  ADS  Google Scholar 

  4. Y.-J. Bao, S.-G. Li, W. Zhang, G.-W. An, Z.-K. Fan, Designing of a polarization beam splitter for the wavelength of 1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion. Chin. Phys. B 23, 104218 (2014)

    Article  ADS  Google Scholar 

  5. I.B. Djordjevic, M. Arabaci, LDCP-coded orbital angular momentum (OAM) modulation for free-space optical communication. Opt. Express 18, 24722–24728 (2010)

    Article  ADS  Google Scholar 

  6. A. Willner, M. Tur, N. Bozinovic, P. Kristensen, S. Ramachandran. Orbital angular momentum (OAM) based mode division multiplexing (MDM) over a Km-length Fiber, in European Conference and Exhibition on Optical Communication, 2012

  7. P.Z. Dashti, F. Alhassen, H.P. Lee, Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys. Rev. Lett. 96, 043604 (2006)

    Article  ADS  Google Scholar 

  8. M. Padgett, J. Courtial, L. Allen, Light’s orbital angular momentum. Int. Quantum Electron. Conf. 57(5), 139–140 (2004)

    Google Scholar 

  9. L. Wang, P. Vaity, S. Chatigny, Y. Messaddeq, L.A. Rusch, S. LaRochelle, Orbital-angular-momentum polarization mode dispersion in optical fibers. J. Lightw. Technol. 34, 1661–1671 (2016)

    Article  ADS  Google Scholar 

  10. X.C. Yuan, P. Jia, T. Lei, M. Zhang, C.J. Min, Y.R. Li, Z.H. Li, H.B. Niu, Optical vortices and optical communication with orbital angular momentum. J. Shenzhen Univ. Sci. Eng. 4, 331–346 (2014)

    Article  Google Scholar 

  11. S. Ramachandran, P. Kristensen, M.F. Yan, Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34(16), 2525–2527 (2009)

    Article  ADS  Google Scholar 

  12. S. Golowich, P. Kristensen, N. Bozinovic, P. Gregg, S. Ramachandran, Fibers supporting orbital angular momentum states for information capacity scaling. Front. Opt. 24, 12 (2012)

    Google Scholar 

  13. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, L.A. Rusch, Design, fabrication and validation of an OAM fiber supporting 36 states. Opt. Express 22, 26117–26127 (2014)

    Article  ADS  Google Scholar 

  14. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  15. M. Zhu, W. Zhang, L. Xi, X. Tang, X. Zhang, A new designed dual-guided ring-core fiber for OAM mode transmission. Opt. Fiber Technol. 25, 58–63 (2015)

    Article  ADS  Google Scholar 

  16. S. Ramachandran, P. Kristensen, M.F. Yan, Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009)

    Article  ADS  Google Scholar 

  17. T. Birk, J. Knight, P. Russell, Endlessly single mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997)

    Article  ADS  Google Scholar 

  18. J. Su, X. Dong, C. Lu, Characteristics of few mode fiber under bending. IEEE J. Sel. Top. Quantum Electron. 10(1109), 1 (2016)

    Google Scholar 

  19. T. Jiajing, L. Keping, S. Kunimasa, Design and optimization of 3-mode 12-core dual-ring structured few-mode multi-core fiber. Opt. Commun. 38, 30–36 (2016)

    Google Scholar 

  20. A. Gaur, V. Rastogi, Design and analysis of annulus core few mode EDFA for modal gain equalization. IEEE Photon. Technol. Lett. 10, 1 (2016)

    Google Scholar 

  21. P. Gregg, P. Kristensen, S. Ramachandran, Conservation of orbital angular momentum in air core optical fibers. Optica 2, 267–270 (2015)

    Article  Google Scholar 

  22. S. Ramachandran, P. Gregg, P. Kristensen, S.E. Golowich, On the scalability of ring fiber designs for OAM multiplexing. Opt. Express 23, 3721–3730 (2015)

    Article  ADS  Google Scholar 

  23. L. Shuhui, W. Jian, Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photon. J. 5, 7101007 (2013)

    Article  Google Scholar 

  24. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh et al., An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction. IEICE Trans. Commun. E94-B, 409–416 (2011)

    Article  ADS  Google Scholar 

  25. N.A. Mortensen, Effective area of photonic crystal fibers. Opt. Express 10, 341–348 (2002)

    Article  ADS  Google Scholar 

  26. L.H. Jiang, L.T. Hou, Q.Q. Yang, Comparison and analysis of the basic characteristics of photonic crystal fiber with three typical structures. Acta Phys. Sin. 59, 4726–4731 (2010)

    Google Scholar 

  27. Y.J. Bao, S.G. Li, W. Zhang, G.W. An, Z.K. Fan, Designing of a polarization beam splitter for the wavelength of 1310 nm on dual-core photonic crystal fiber with high birefringence and double-zero dispersion. Chin. Phys. B 23(10), 104218 (2014)

    Article  ADS  Google Scholar 

  28. W.X. Yang, G.Y. Zhou, C.M. Xia, W. Wang, H.J. Hu, L.T. Hou, An improved design method for C-band photonic crystal fibers with flat near-zero dispersion. Acta Phys. Sin. 60, 104222-1–104222-6 (2011)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (61575066, 61735005, and 61527822), GDUPS (2017), Science and Technology Program of Guangzhou, China (201707010133), Science and Technology Planning Project of Guangdong Province (2017KZ010101), The National Key Research and Development Program of China (2008YFB0407400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiyao Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Zhou, G., Chen, C. et al. A novel micro-structured fiber for OAM mode and LP mode simultaneous transmission. J Opt 47, 428–436 (2018). https://doi.org/10.1007/s12596-018-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-018-0487-5

Keywords

Navigation