Skip to main content
Log in

Laser diode to circular core graded index single mode fiber excitation via quadric interface microlens on the fiber tip and identification of the suitable refractive index profile for maximum coupling efficiency with optimization of structure parameter

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We report what to our knowledge is the first theoretical prediction of the optimum coupling efficiency of a laser diode emitting two wavelengths either 1.3 or 1.5 µm to a series of circular core graded index single mode fibers with different profile exponents via quadric interface microlens of four different focal lengths on the fiber tip to predict the nature of suitable refractive index profile. Instead of considering special ABCD matrix for individual microlens like hyperbolic, parabolic and elliptical (hemispherical included) one, a simple, accurate, and popular unified transfer ABCD matrix for refraction of quadric microlens under paraxial approximation is utilized to analyze the theoretical coupling efficiency, based on Gaussian beam approximation. Further, it is observed that out of the studied refractive index profiles, the step index profile comes out to be the most suitable profile to couple laser diode to circular core graded index single mode fiber for both wavelengths of practical interest. Moreover, the coupling efficiency can reach nearly 100 % with optimizing structure parameters of specific lensed fiber in both cases. The analysis should find use in ongoing investigations for optimum launch optics for the design of quadric interface microlens either directly on the circular core graded index single mode fiber tip or such fiber attached to single mode fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. E. Li, Characterization of fiber lens. Opt. Lett. 31, 169–171 (2006)

    Article  ADS  Google Scholar 

  2. H.M. Presby, C.A. Edwards, Near 100 % efficient fibre microlenses. Electron. Lett. 28, 582–584 (1992)

    Article  ADS  Google Scholar 

  3. C.A. Edwards, H.M. Presby, C. Dragone, Ideal microlenses for laser to fiber coupling. J. Lightwave Technol. 11, 252–257 (1993)

    Article  ADS  Google Scholar 

  4. J. John, T.S.M. Maclean, H. Ghafouri-Shiraz, J. Niblett, Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength. IEE Proc. Optoelectron. 141, 178–184 (1994)

    Article  Google Scholar 

  5. H.M. Presby, C.A. Edwards, Efficient coupling of polarization maintaining fiber to laser diodes. IEEE Photonics Technol. Lett. 4, 897–899 (1992)

    Article  ADS  Google Scholar 

  6. H. Liu, L. Liu, R. Xu, Z. Luan, ABCD matrix for reflection and refraction of Gaussian beams at the surface of a parabola of revolution. Appl. Opt. 44, 4809–4813 (2005)

    Article  ADS  Google Scholar 

  7. G.A. Massey, A.E. Siegman, Reflection and refraction of Gaussian light beams at tilted ellipsoidal surfaces. Appl. Opt. 8, 975–978 (1969)

    Article  ADS  Google Scholar 

  8. L. Yuan, A. Qui, Analysis of a single-mode fiber with taper lens end. J. Opt. Soc. Am. A 9, 950–952 (1992)

    Article  ADS  Google Scholar 

  9. L.B. Yuan, R.L. Shou, Formation and power distribution properties of an upside down taper lens at the end of an optical fiber. Sens. Actuators A21–A23, 1158–1161 (1990)

    Article  Google Scholar 

  10. S. Gangopadhyay, S.N. Sarkar, Laser diode to single-mode fibre excitation via hyperbolic lens on the fibre tip: formulation of ABCD matrix and efficiency computation. Opt. Commun. 132, 55–60 (1996)

    Article  ADS  Google Scholar 

  11. S. Gangopadhyay, S.N. Sarkar, ABCD matrix for reflection and refraction of Gaussian light beams at surfaces of hyperboloid of revolution and efficiency computation for laser diode to single-mode fiber coupling by way of a hyperbolic lens on the fiber tip. Appl. Opt. 36, 8582–8586 (1997)

    Article  ADS  Google Scholar 

  12. S. Gangopadhyay, S.N. Sarkar, Misalignment considerations in laser diode to single-mode fibre excitation via hyperbolic lens on the fibre tip. Opt. Commun. 146, 104–108 (1998)

    Article  ADS  Google Scholar 

  13. S. Gangopadhyay, S.N. Sarkar, Laser diode to single-mode fiber excitation via hemispherical lens on the fiber tip: efficiency computation by ABCD matrix with consideration for allowable aperture. J. Opt. Commun. 19, 42–44 (1998)

    Google Scholar 

  14. S. Gangopadhyay, S.N. Sarkar, Misalignment considerations in laser diode to single-mode fiber excitation via hemispherical lens on the fiber tip. J. Opt. Commun. 19, 217–221 (1998)

    Google Scholar 

  15. H. Liu, The approximate ABCD matrix for a parabolic lens of revolution and its application in calculating the coupling efficiency. Optik 119, 666–670 (2008)

    Article  ADS  Google Scholar 

  16. S.K. Mondal, S. Gangopadhyay, S.N. Sarkar, Analysis of an upside-down taper lens end from a single-mode step index fiber. Appl. Opt. 37, 1006–1009 (1998)

    Article  ADS  Google Scholar 

  17. S.K. Mondal, S.N. Sarkar, Coupling of a laser diode to single-mode fiber with an upside-down tapered lens end. Appl. Opt. 38, 6272–6277 (1999)

    Article  ADS  Google Scholar 

  18. S. Mukhopadhyay, S. Gangopadhyay, S.N. Sarkar, Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix. Opt. Eng. 46(2), 025008(1-5) (2007)

    ADS  Google Scholar 

  19. S. Mukhopadhyay, S. Gangopadhyay, S.N. Sarkar, Misalignment considerations in a laser diode to monomode elliptic core fiber coupling via a hyperbolic microlens on the fiber tip: efficiency computation by the ABCD matrix. Opt. Eng. 46(9), 095008(1-5) (2007)

    ADS  Google Scholar 

  20. M.C. Kundu, S. Gangopadhyay, Laser diode to monomode elliptic core fiber excitation via hemispherical lens on the fiber tip: efficiency computation by ABCD matrix with consideration for allowable aperture. Optik 117, 586–590 (2006)

    Article  ADS  Google Scholar 

  21. P. Patra, S. Gangopadhyay, K. Goswami, Mismatch considerations in laser diode to monomode fiber excitation via a hemispherical lens on the elliptical core fiber tip. Optik 119, 596–600 (2008)

    Article  ADS  Google Scholar 

  22. S. Mukhopadhyay, Laser diode to elliptic-core step index single mode fiber excitation via parabolic microlens on the fiber tip: prediction of coupling efficiency by ABCD matrix formalism. J. Phys. Sci. 20, 159–171 (2015)

    Google Scholar 

  23. S. Mukhopadhyay, S. Gangopadhyay, S.N. Sarkar, Coupling of a laser diode to monomode elliptic core fiber via upside down tapered microlens on the fiber tip: estimation of coupling efficiency with consideration for possible misalignments by ABCD matrix formalism. Optik 121, 142–150 (2010)

    Article  ADS  Google Scholar 

  24. S. Mukhopadhyay, S.N. Sarkar, Coupling of a laser diode to single mode circular core graded index fiber via hyperbolic microlens on the fiber tip and identification of the suitable refractive index profile with consideration for possible misalignments. Opt. Eng. 50(4), 045004(1-9) (2011)

    ADS  Google Scholar 

  25. A. Bose, S. Gangopadhyay, S.C. Saha, Laser diode to single mode circular core graded index fiber excitation via hemispherical microlens on the fiber tip: identification of suitable refractive index profile for maximum efficiency with consideration for allowable aperture. J. Opt. Commun. 33(1), 15–19 (2012)

    Article  Google Scholar 

  26. S. Mukhopadhyay, Coupling of a laser diode to single mode circular core graded index fiber via parabolic microlens on the fiber tip and identification of the suitable refractive index profile with consideration for possible misalignments. J. Opt. (2016). doi:10.1007/s12596-016-0311-z

    Google Scholar 

  27. S. Mukhopadhyay, Laser diode to circular core graded index single mode fiber excitation via upside down tapered microlens on the fiber tip and identification of the suitable refractive index profile. J. Phys. Sci. 20, 173–187 (2015)

    Google Scholar 

  28. J. Huang, H.J. Yang, ABCD matrix model of quadric interface-lensed fiber and its application in coupling efficiency calculation. Optik 121, 531–534 (2010)

    Article  ADS  Google Scholar 

  29. A. Keshavarz, M. Kazempour, Numerical calculation of coupling efficiency for an elegant Hermite-Cosh-Gaussian beams. Int. J. Opt. Photonics 6(2), 75–82 (2012)

    Google Scholar 

  30. S. Mukhopadhyay, Coupling of a laser diode to a quadric interface lensed monomode elliptic-core step index fiber: efficiency computation with the ABCD matrix. J. Opt. 45(2), 167–174 (2016)

    Article  Google Scholar 

  31. R. Tewari, B.P. Pal, Mode excitation by lenses in single mode optical fibers havings graded index profiles. J. Opt. Commun. 6, 25–29 (1985)

    Article  Google Scholar 

  32. D. Marcuse, Gaussian approximation of the fundamental modes of graded index fibers. J. Opt. Soc. Am. 68, 103–109 (1978)

    Article  ADS  Google Scholar 

  33. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977)

    Article  Google Scholar 

  34. M. Bass, V.N. Mahajan, in Geometrical and Physical Optics, Polarised Light, Components and Instruments, ed. by M. Bass, V.N. Mahajan. Handbook of Optics, vol 1, 3rd edn. (McGraw-Hill, NewYork, 2010) Chapters 22 and 29

  35. S.N. Sarkar, K. Thyagarajan, A. Kumar, Gaussian approximation of the fundamental mode in single mode elliptic core fibers. Opt. Commun. 49, 178–183 (1984)

    Article  ADS  Google Scholar 

  36. S.N. Sarkar, B.P. Pal, K. Thyagarajan, Lens coupling of laser diodes to monomode elliptic core fibers. J. Opt. Commun. 7, 92–96 (1986)

    Article  Google Scholar 

  37. A.K. Ghatak, K. Thyagarajan, Optical Electronics, Ch. 13 (Cambridge University Press, Cambridge, 1998), pp. 411–415

    Google Scholar 

Download references

Acknowledgment

The author is grateful to University Grants Commission (UGC) for providing financial assistance in a UGC-Minor Research Project (No. PSW-076/14-15 (ERO)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Mukhopadhyay.

Appendix

Appendix

The relation between input and output parameters (q 1, q 2) of the light beam is given by

$$q_{2} = \frac{{Aq_{1} + B}}{{Cq_{1} + D}}$$
(10)

where

$$\frac{1}{{q_{1,2} }} = \frac{1}{{R_{1,2} }} - \frac{{i\lambda_{0} }}{{\pi w_{1,2}^{2} \mu_{1,2} }}$$
(11)

with symbols having their usual meanings as already described.

The ray matrix M for the QIML on the tip of the fiber is given by [2830]

$$\begin{aligned} & M = \left( {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right) \\ & M = \left( {\begin{array}{*{20}c} 1 & d \\ 0 & 1 \\ \end{array} } \right)\left( {\begin{array}{*{20}c} 1 & 0 \\ {\frac{1 - \mu }{\mu P}} & {\frac{1}{\mu }} \\ \end{array} } \right)\left( {\begin{array}{*{20}c} 1 & L \\ 0 & 1 \\ \end{array} } \right) \\ \end{aligned}$$
(12)

where

$$A = 1 + \frac{d(1 - \mu )}{\mu P}$$
(13a)
$$B = L + \frac{(1 - \mu )Ld}{\mu P} + \frac{d}{\mu }$$
(13b)
$$C = \frac{1 - \mu }{\mu P}$$
(13c)
$$D = \frac{1}{\mu } + \frac{(1 - \mu )L}{\mu P}$$
(13d)

where P is the structure parameter of the quadric interface lensed fiber, and L is the working distance which is also the distance of the LD from the microlens.

Again, the refractive index of the material of the microlens with respect to the incident medium is represented by \(\mu ( = {\raise0.7ex\hbox{${\mu_{2} }$} \!\mathord{\left/ {\vphantom {{\mu_{2} } {\mu_{1} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${\mu_{1} }$}}).\) The transformed beam spot sizes and radii of curvature in the X and Y directions are found by using Eqs. (13a13d) in Eqs. (10) and (11) and can be expressed as

$$w_{2x,2y}^{2} = \frac{{A_{1}^{2} w_{1x,1y}^{2} + \frac{{\left( {\lambda_{1}^{2} B^{2} } \right)}}{{w_{1x,1y}^{2} }}}}{{\mu (A_{1} D - BC_{1} )}}$$
(14)
$$\frac{1}{{R_{2x,2y} }} = \frac{{A_{1} C_{1} w_{1x,1y}^{2} + \frac{{\left( {\lambda_{1}^{2} BD} \right)}}{{w_{1x,1y}^{2} }}}}{{A_{1}^{2} w_{1x,1y}^{2} + \frac{{\left( {\lambda_{1}^{2} B^{2} } \right)}}{{w_{1x,1y}^{2} }}}}$$
(15)

where

$$\lambda_{1} = \frac{\lambda }{\pi },\quad \lambda = \frac{{\lambda_{0} }}{{\mu_{1} }},\quad A_{1} = A + \frac{B}{{R_{1} }}\;{\text{and}}\;C_{1} = C + \frac{D}{{R_{1} }}.$$
(16)

In plane wavefront model, the radius of curvature R 1 of the wavefront from the laser facet → ∞. This leads to A 1 = A and C 1 = C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S. Laser diode to circular core graded index single mode fiber excitation via quadric interface microlens on the fiber tip and identification of the suitable refractive index profile for maximum coupling efficiency with optimization of structure parameter. J Opt 46, 359–367 (2017). https://doi.org/10.1007/s12596-016-0358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0358-x

Keywords

Navigation