Skip to main content
Log in

Coupling of a laser diode to single mode circular core graded index fiber via parabolic microlens on the fiber tip and identification of the suitable refractive index profile with consideration for possible misalignments

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

We present a theoretical investigation of coupling optics involving a laser diode and circular core graded index single mode fiber via a parabolic microlens on the fiber tip to predict the nature of suitable refractive index profile for the first time in connection with optimum coupling. The study is carried out in absence and presence of possible transverse and angular misalignments. By employing Gaussian field distributions for both the source and the fiber and also ABCD matrix for parabolic microlens under paraxial approximation, we formulate analytical expressions for the concerned coupling efficiencies. The investigations are performed for two different light-emitting wavelengths of 1.3 μm and 1.5 μm for such fibers with different refractive index profile exponents. Further, it is observed that out of the studied refractive index profiles, triangular index profile having the dispersion-shifted merit comes out to be the most suitable profile to couple laser diode to such abovementioned fiber for two wavelengths of practical interest. The analysis should find use in ongoing investigations for optimum launch optics for the design of parabolic microlens either directly on the circular core graded index single mode fiber tip or such fiber attached to single mode fiber to achieve long working distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.H. Song, H.N.J. Fernando, B. Roycroft, B. Corbett, F.H. Peters, Practical design of lensed fibers for semiconductor laser packaging using laser welding technique. J. Lightwave Technol. 27, 1533–1539 (2009)

    Article  ADS  Google Scholar 

  2. E. Li, Characterization of fiber lens. Opt. Lett. 31, 169–171 (2006)

    Article  ADS  Google Scholar 

  3. H.M. Presby, C.A. Edwards, Near 100% efficient fibre microlenses. Electron. Lett. 28, 582–584 (1992)

    Article  ADS  Google Scholar 

  4. C.A. Edwards, H.M. Presby, C. Dragone, Ideal microlenses for laser to fiber coupling. J. Lightwave Technol. 11, 252–257 (1993)

    Article  ADS  Google Scholar 

  5. J. John, T.S.M. Maclean, H. Ghafouri-Shiraz, J. Niblett, Matching of single-mode fibre to laser diode by microlenses at 1.5 μm wavelength. IEE Proc. Optoelectron. 141, 178–184 (1994)

    Article  Google Scholar 

  6. H.M. Presby, C.A. Edwards, Efficient coupling of polarization maintaining fiber to laser diodes. IEEE Photon. Technol. Lett. 4, 897–899 (1992)

    Article  ADS  Google Scholar 

  7. S. Gangopadhyay, S.N. Sarkar, Laser diode to single-mode fibre excitation via hyperbolic lens on the fibre tip: Formulation of ABCD matrix and efficiency computation. Opt. Commun. 132, 55–60 (1996)

    Article  ADS  Google Scholar 

  8. S. Gangopadhyay, S.N. Sarkar, ABCD matrix for reflection and refraction of Gaussian light beams at surfaces of hyperboloid of revolution and efficiency computation for laser diode to single-mode fiber coupling by way of a hyperbolic lens on the fiber tip. Appl. Opt. 36, 8582–8586 (1997)

    Article  ADS  Google Scholar 

  9. S. Gangopadhyay, S.N. Sarkar, Misalignment considerations in laser diode to single-mode fibre excitation via hyperbolic lens on the fibre tip. Opt. Commun. 146, 104–108 (1998)

    Article  ADS  Google Scholar 

  10. S. Mukhopadhyay, S. Gangopadhyay, S.N. Sarkar, Coupling of a laser diode to a monomode elliptic-core fiber via a hyperbolic microlens on the fiber tip: efficiency computation with the ABCD matrix. Opt. Eng. 46(2), 025008(1-5) (2007)

    ADS  Google Scholar 

  11. S. Mukhopadhyay, S. Gangopadhyay, S.N. Sarkar, Misalignment considerations in a laser diode to monomode elliptic core fiber coupling via a hyperbolic microlens on the fiber tip: efficiency computation by the ABCD matrix. Opt. Eng. 46(9), 095008 (1-5) (2007)

    ADS  Google Scholar 

  12. S. Mukhopadhyay, S. Gangopadhyay, S.N. Sarkar, Coupling of a laser diode to monomode elliptic core fiber via upside down tapered microlens on the fiber tip: Estimation of coupling efficiency with consideration for possible misalignments by ABCD matrix formalism. Optik 121, 142–150 (2010)

    Article  ADS  Google Scholar 

  13. H.-M. Yang, S.-Y. Huang, C.-W. Lee, T.-S. Lay, W.-H. Cheng, High-coupling tapered hyperbolic fiber microlens and taper asymmetry effect. J. Lightwave Technol. 22, 1395–1401 (2004)

    Article  ADS  Google Scholar 

  14. S. Gangopadhyay, S.N. Sarkar, Laser diode to single-mode fiber excitation via hemispherical lens on the fiber tip: Efficiency computation by ABCD matrix with consideration for allowable aperture. J. Opt. Commun. 19, 42–44 (1998)

    Google Scholar 

  15. S. Gangopadhyay, S.N. Sarkar, Misalignment considerations in laser diode to single-mode fiber excitation via hemispherical lens on the fiber tip. J. Opt. Commun. 19, 217–221 (1998)

    Google Scholar 

  16. M.C. Kundu, S. Gangopadhyay, Laser diode to monomode elliptic core fiber excitation via hemispherical lens on the fiber tip: efficiency computation by ABCD matrix with consideration for allowable aperture. Optik 117, 586–590 (2006)

    Article  ADS  Google Scholar 

  17. L.B. Yuan, R.L. Shou, Formation and power distribution properties of an upside down taper lens at the end of an optical fiber. Sensors Actuators A21-A23, 1158–1161 (1990)

    Article  Google Scholar 

  18. L. Yuan, A. Qui, Analysis of a single-mode fiber with taper lens end. J. Opt. Soc. Am. A 9, 950–952 (1992)

    Article  ADS  Google Scholar 

  19. S.K. Mondal, S. Gangopadhyay, S.N. Sarkar, Analysis of an upside-down taper lens end from a single-mode step index fiber. Appl. Opt. 37, 1006–1009 (1998)

    Article  ADS  Google Scholar 

  20. S.K. Mondal, S.N. Sarkar, Coupling of a laser diode to single-mode fiber with an upside-down tapered lens end. Appl. Opt. 38, 6272–6277 (1999)

    Article  ADS  Google Scholar 

  21. K. Shiraishi, N. Oyama, K. Matsumura, I. Ohishi, S. Suga, A fiber lens with a long working distance for integrated coupling between laser diodes and single mode fibers. J. Lightwave Technol. 13, 1736–1744 (1995)

    Article  ADS  Google Scholar 

  22. K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, H. Kazami, A lensed–fiber coupling scheme utilizing a graded index fiber and a hemisphically ended coreless fiber tip. J. Lightwave Technol. 15, 356–363 (1997)

    Article  ADS  Google Scholar 

  23. K. Shiraishi, S.-I. Kuroo, A new lensed-fiber configuration employing cascaded GI- fiber chips. J. Lightwave Technol. 18, 787–794 (2000)

    Article  ADS  Google Scholar 

  24. M. Thual, P. Chanclou, O. Gautreau, L. Caledec, C. Guignard, P. Besnard, Appropriate micro-lens to improve coupling between laser diodes and single mode fibres. Electron. Lett. 39, 1504–1505 (2003)

    Article  Google Scholar 

  25. H. Liu, L. Liu, R. Xu, Z. Luan, ABCD matrix for reflection and refraction of Gaussian beams at the surface of a parabola of revolution. Appl. Opt. 44, 4809–4813 (2005)

    Article  ADS  Google Scholar 

  26. H. Liu, The approximate ABCD matrix for a parabolic lens of revolution and its application in calculating the coupling efficiency. Optik 119, 666–670 (2008)

    Article  ADS  Google Scholar 

  27. S. Mukhopadhyay, S.N. Sarkar, Coupling of a laser diode to single mode circular core graded index fiber via hyperbolic microlens on the fiber tip and identification of the suitable refractive index profile with consideration for possible misalignments. Opt. Eng. 50(4), 045004(1-9) (2011)

    ADS  Google Scholar 

  28. A. Bose, S. Gangopadhyay, S.C. Saha, Laser diode to single mode circular core graded index fiber excitation via hemispherical microlens on the fiber tip: Identification of suitable refractive index profile for maximum efficiency with consideration for allowable aperture. J. Opt. Commun. 33(1), 15–19 (2012)

    Article  Google Scholar 

  29. D. Marcuse, Gaussian approximation of the fundamental modes of graded index fibers. J. Opt. Soc. Am. 68, 103–109 (1978)

    Article  ADS  Google Scholar 

  30. D. Marcuse, Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703–718 (1977)

    Article  Google Scholar 

  31. M. Bass, V.N. Mahajan, Handbook of Optics, in Geometrical and Physical Optics, Polarised Light, Components and Instruments, Vol. 1. 3rd edn. (McGraw-Hill, NewYork, 2010) Chapters 22 and 29

  32. S.N. Sarkar, K. Thyagarajan, A. Kumar, Gaussian approximation of the fundamental mode in single mode elliptic core fibers. Opt. Commun. 49, 178–183 (1984)

    Article  ADS  Google Scholar 

  33. S.N. Sarkar, B.P. Pal, K. Thyagarajan, Lens coupling of laser diodes to monomode elliptic core fibers. J. Opt. Commun. 7, 92–96 (1986)

    Article  Google Scholar 

  34. A.K. Ghatak, K. Thyagarajan, Optical Electronics, (Cambridge University Press, United Kingdom, 1998) Ch. 13, pp. 411–415

  35. R. Tewari, B.P. Pal, Mode excitation by lenses in single mode optical fibers havings graded index profiles. J. Opt. Commun. 6, 25–29 (1985)

    Article  Google Scholar 

  36. X. Zeng, Y. An, Coupling light from a laser diode into a multimode fiber. Appl. Opt. 42, 4427–4430 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The author is grateful to University Grants Commission (UGC) for providing financial assistance in a UGC-Minor Research Project (No. PSW-076/14-15 (ERO)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Mukhopadhyay.

Appendix

Appendix

The relation between input and output parameters (q 1,q 2) of the light beam is given by

$$ {q}_2=\frac{A{q}_1+B}{C{q}_1+D} $$
(A1)

where

$$ \frac{1}{q_{1,2}}=\frac{1}{R_{1,2}}-\frac{i{\lambda}_0}{\pi {w}_{1,2}^2{\mu}_{1,2}} $$
(A2)

with symbols having their usual meanings as already described.

The ray matrix M for the PML on the fiber tip is given by [26]

$$ \begin{array}{l}M=\left(\begin{array}{l}A\kern0.36em \\ {}C\end{array}\right.\left.\begin{array}{l}B\\ {}D\end{array}\right)\\ {}M=\left(\begin{array}{l}1\\ {}0\end{array}\right.\kern0.36em \left.\begin{array}{l}d\\ {}1\end{array}\right)\kern0.48em \left(\begin{array}{l}1\kern2.64em 0\\ {}\frac{1-\mu }{\mu p}\kern1.2em \frac{1}{\mu}\kern0.96em \end{array}\right)\kern0.6em \left(\begin{array}{l}1\kern0.6em \\ {}0\kern0.84em \end{array}\right.\left.\begin{array}{l}L\\ {}1\end{array}\right)\end{array} $$
(A3)

where

$$ A=1+\frac{d\left(1-\mu \right)}{\mu p} $$
(A4a)
$$ B=L+\frac{\left(1-\mu \right)Ld}{\mu p}+\frac{d}{\mu } $$
(A4b)
$$ C=\frac{1-\mu }{\mu p} $$
(A4c)
$$ D=\frac{1}{\mu }+\frac{\left(1-\mu \right)L}{\mu p} $$
(A4d)

where p is the focal parameter of the parabola, and L is the working distance which is also the distance of the LD from the PML.

Again, the refractive index of the material of the microlens with respect to the incident medium is represented by \( \mu \left(=\raisebox{1ex}{${\mu}_2$}\!\left/ \!\raisebox{-1ex}{${\mu}_1$}\right.\right) \). The transformed beam spot sizes and radii of curvature in the X and Y directions are found by using Eqs. (A4a-A4d) in Eqs. (A1) and (A2) and can be expressed as

$$ {w}_{2x,2y}^2=\frac{A_1^2{w}_{1x,1y}^2+\frac{\left({\lambda}_1^2{B}^2\right)}{w_{1x,1y}^2}}{\mu \left({A}_1D-B{C}_1\right)} $$
(A5)
$$ \frac{1}{R_{2x,2y}}=\frac{A_1{C}_1{w}_{1x,1y}^2+\frac{\left({\lambda}_1^2BD\right)}{w_{1x,1y}^2}}{A_1^2{w}_{1x,1y}^2+\frac{\left({\lambda}_1^2{B}^2\right)}{w_{1x,1y}^2}} $$
(A6)

where

$$ \begin{array}{cc}\hfill {\lambda}_1=\frac{\lambda }{\pi },\;\lambda =\frac{\lambda_0}{\mu_1},\;{A}_1=A+\frac{B}{R_1}\hfill & \hfill \mathrm{and}\hfill \end{array}\;{C}_1=C+\frac{D}{R_1} $$
(A7)

In plane wavefront model, the radius of curvature R 1 of the wavefront from the laser facet → ∞. This leads to A 1 = A and C 1 = C.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S. Coupling of a laser diode to single mode circular core graded index fiber via parabolic microlens on the fiber tip and identification of the suitable refractive index profile with consideration for possible misalignments. J Opt 45, 312–323 (2016). https://doi.org/10.1007/s12596-016-0311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0311-z

Keywords

Navigation