Skip to main content
Log in

An overview of fiber dispersion and nonlinearity compensation techniques in optical orthogonal frequency division multiplexing systems

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optical fiber based transmission network is the key technology to support high capacity backhaul needs for future wireless communication standards. Orthogonal Frequency Division Multiplexing (OFDM), Multiple Input Multiple Output (MIMO) transreception, Carrier Aggregation (CA), Co-operative Multi-Point (Co MP) and Wavelength Division Multiplexing (WDM) for backhaul/backbone are all, state of the art techniques used in most of these standards. The successful implementation of all these technologies requires modification of the network architecture which leads to challenges on backhaul design in terms of capacity and latency requirements. The optical fiber networks implemented in the form of analogue Radio over Fiber (RoF) or digital RoF offers a prospective solution. The performance of analogue RoF suffers from noise and linearity issues and digital RoF is degraded by fiber dispersion and nonlinearity due to high rate of transmission. Dispersion and nonlinearity compensation becomes essential to make the optical fiber backhaul supportive of the emerging wireless technologies. This paper reviews and compares various techniques proposed in the literature for compensating fiber dispersion and nonlinearity. A comprehensive comparison of fiber dispersion and nonlinear effects are summarized. Further, the selection criteria for choosing a particular compensating technique in Optical OFDM and WDM systems have been presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. CISCO VNI, Global Mobile Data Traffic Forecast, 2012-2017 Feb. 2013 [Online]. Available: http://www.cisco.com

  2. Y. Yang, A. Nirmalathas, C. Lim, Digitized RF-over-fiber as a cost-effective and energy-efficient backhaul option for wireless communications. Ann. Telecommun. 68(1-2), 23–39 (2012)

    Article  Google Scholar 

  3. T.J. Hall, F. Lucarz, J. Mitchell, P. Pajusco, Radio-over-fibre for green wireless access networks. Ann. Telecommun. 68(1-2), 1–2 (2013)

    Article  Google Scholar 

  4. L. Suarez, L. Nuaymi, J.-M. Bonnin, An overview and classification of research approaches in green wireless networks. EURASIP J. Wirel. Commun. Netw. 142 (2012)

  5. D. Johnson, Core and backhaul transport. BT Technol. J. 22(2), 69–77 (2004)

    Article  Google Scholar 

  6. T. Biermanna, L. Scalia, C. Choi, H. Karl, W. Kellerer, CoMP clustering and backhaul limitations in cooperative cellular mobile access networks. Pervasive Mob. Comput. 8(5), 662–681 (2012)

    Article  Google Scholar 

  7. R.Q. Shaddad, A.B. Mohammada, S.A. Al-Gailani, A.M. Al-hetar, M.A. Elmagzoub, A survey on access technologies for broadband optical and wireless networks. J. Netw. Comput. Appl. 41, 459–472 (2014)

    Article  Google Scholar 

  8. T. Orphanoudakis, E. Kosmatos, J. Angelopoulos, A. Stavdas, Exploiting PONs for Mobile Backhaul. IEEE Commun. Mag. 51(2), s27–s34 (2013)

    Article  Google Scholar 

  9. C. Ranaweera, E. Wong, C. Lim, A. Nirmalathas, C. Jayasundara, An efficient resource allocation mechanism for ltegepon converged networks. J. Netw. Syst. Manag. 22(3), 437–461 (2013)

    Article  Google Scholar 

  10. T. Gilfedder, Deploying GPON technology for backhaul applications. BT Technol. J. 24(2), 20–25 (2006)

    Article  Google Scholar 

  11. P. Chemouil, M. Menth, D. Medhi, F. Guillemin, Design and performance of future networks. Ann. Telecommun. 66(1-2), 1–3 (2011)

    Article  Google Scholar 

  12. C. Kloch, P. Karlsson, The future - vision and challenges (seen from a cellular operator’s perspective). Wirel. Pers. Commun. 38(1), 5–15 (2006)

    Article  Google Scholar 

  13. O. Tipmongkolsilp, S. Zaghloul, A. Jukan, The Evolution of Cellular Backhaul Technologies: Current Issues and Future Trends. IEEE Commun. Surv. Tutorials. 13(1), 97–113 (2011)

    Article  Google Scholar 

  14. J.E. Mitchell, Integrated wireless backhaul over optical access networks. J. Light. Technol. 32(20), 3373–3382 (2014)

    Article  ADS  Google Scholar 

  15. L. Deng, M. Zhang, D. Liu, Y. Qian, K. Yang, OFDMA-based LAN emulation in long-reach hybrid PON system. Opt. Commun. 284(3), 740–746 (2011)

    Article  ADS  Google Scholar 

  16. V. Sharma, A. Singh, K.S. Ajay, Challenges to radio over fiber (RoF) technology and its mitigation schemes - A review. Opt. - Int. J. Light. Electron Opt. 123(4), 338–342 (2012)

    Article  Google Scholar 

  17. J. Armstrong, OFDM for Optical Communications. J. Light. Technol. 27(3), 189–204 (2009)

    Article  ADS  Google Scholar 

  18. W. Shieh, I. Djordjevic. OFDM for Optical Communications (Elsevier, 2010)

  19. B.D. Ivan, X. Lei, T. Wang, Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes. Opt. Express. 16(14), 10269–10278 (2008)

    Article  Google Scholar 

  20. R. Van Nee, R. Prasad. OFDM for Wireless Multimedia Communications (Artech house, 2000)

  21. Q. Zhuge, C. Chen, V.P. David, Impact of Intra-Channel Fiber Nonlinearity on Reduced- Guard- Interval CO-OFDM Transmission. Optical Fiber Communications (OFC) conference, paper OWO3 (2011)

  22. R. Kanwar, S. Bhaskar, Performance analysis of fiber optic link using different obp techniques. IJESET. 5 (2), 144–149 (2013)

    Google Scholar 

  23. D. Liang, A. Lowery, Fiber Nonlinearity Compensation for CO-OFDM Systems with Periodic Dispersion Maps. OFC/NFOEC, 1–3 (2009)

  24. A.J. Lowery, J. Armstrong, Orthogonal- Frequency-Division Multiplexing for Optical Dispersion Compensation. OFC/NFOEC, 1–3 (2007)

  25. B.Y.D. Liang, A.J. Lowery, Fiber nonlinearity precompensation for longhaul links using direct-detection optical OFDM. Opt. Express. 16(9), 6209–6215 (2008)

    Article  ADS  Google Scholar 

  26. A.J. Lowery, Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM. Opt. Express. 15(20), 12965–12970 (2007)

  27. J. Arthur, Lowery: Fiber Nonlinearity Mitigation in Optical Links That Use OFDM for Dispersion Compensation. IEEE Photon. Tech. Lett. 19(19), 1556–1558 (2007)

    Article  Google Scholar 

  28. A.J. Lowery, J. Armstrong, Orthogonal frequency division multiplexing for dispersion compensation of long-haul optical systems. Opt. Express. 14(6), 2079–2084 (2006)

    Article  ADS  Google Scholar 

  29. J. Vojtech, M. Kars̈ek, J. Radil, Experimental comparison of all-optical methods of chromatic dispersion compensation in long haul transmission at speeds of 10 Gbit/s. J. Opt. Netw. 6(12), 1340–1348 (2007)

    Article  Google Scholar 

  30. B.C. Chatterjee, N. Sarma, P.P. Sahu, Priority based routing and wavelength assignment with traffic grooming for optical networks. J. Opt. Commun. Netw. 4(6), 480–489 (2012)

    Article  Google Scholar 

  31. B.C. Chatterjee, N. Sarma, P.P. Sahu, A QoS-aware wavelength assignment scheme for optical networks. Optik-Internationl. J. Light Electron Opt. 124(20), 4498–4501 (2013)

    Article  Google Scholar 

  32. Y. Guo, C.K. Kao, H.E. Li, K.S. Chiang. Nonlinear Photonics - Nonlinearities in Optics, Optoelectronics and Fiber Communications, 1st (Springer and Chinese University Press, Hongkong, 2002)

  33. M. Nazarathy, R. Weidenfeld, Nonlinear impairments in coherent optical ofdm systems and their mitigation. Opt. Fiber Commun. Rep. Springer. 7, 87–175 (2011)

    Google Scholar 

  34. G.P. Agrawal. Nonlinear Fiber Optics, 3rd (Academic Press, New York, 2001)

  35. T. Schneider. Nonlinear Optics in Telecommunications (Springer, 2004)

  36. G. Keiser. Optical Fiber Communications, 3rd (McGraw-Hill, New York, 2000)

  37. F. Mitschke. Fiber Optics: Physics and Technology (Springer, 2010)

  38. S. Spolitis, V. Bobrovs, P. Gavars, G. Ivanovs, Comparison of Passive Chromatic Dispersion Compensation Techniques for Long Reach Dense WDM-PON System. J. Electron. Electr. Eng. 122(6), 65–70 (2012)

    Google Scholar 

  39. G.P. Agrawal. Fiber-Optic Communication System, 3rd (Wiley, 2001)

  40. A.J. Agarwal, M. kumar, R. Saxena, Comparison of different techniques of dispersion compensation. International. J. Electr. Comput. Sc. Eng. 2(3), 912–918 (2013)

    Google Scholar 

  41. R. kashyap. Fiber Bragg Gratings, 3rd (Academic press, 1999)

  42. M. Sumetsky, B.J. Eggleton, Fiber bragg gratings for dispersion compensation in optical communication systems. Opt. Fiber Commun. Rep. Springer. 3, 277–299 (2007)

    Article  Google Scholar 

  43. B.C. Chatterjee, N. Sarma, P.P. Sahu, Priority based dispersion-reduced wavelength assignment for optical networks. J. Light. Technol. 31(2), 257–263 (2013)

    Article  ADS  Google Scholar 

  44. S. Singh, R.S. Kaler, Comparison of pre-, post- and symmetrical compensation for 96 channel DWDM system using PDCF and PSMF. Optik-Internationl. J. Light Electron Opt. 124(14), 1808–1813 (2013)

    Article  Google Scholar 

  45. A.L. William, I. Lyubomirsky, Electronic dispersion compensation in a 50 Gb/s optically unamplified direct-detection receiver enabled by vestigial-sideband orthogonal frequency division multiplexing. Opt. Express. 22 (6), 6984–6995 (2014)

    Article  ADS  Google Scholar 

  46. G. Qi, V.T. An, Mitigation of Rayleigh noise and dispersion in REAM-based WDM-PON using spectrumshaping codes. Opt. Express. 20(26), 452–461 (2012)

    Article  Google Scholar 

  47. R.B. Chaudhuri, A.D. Barman, Mitigation of Chromatic Dispersion Electronically in a Coherent Optical Communication System. Microwave and Photonics (ICMAP (2013)

  48. G. Ninga, S. Adityaa, P. Shuma, Y.D. Gongb, H. Donga, M. Tanga, PMD effect on pulse shapes and power penalty in optical communication systems. Opt. Commun. 260(2), 560–566 (2006)

    Article  ADS  Google Scholar 

  49. T. Sabapathi, R. Gowri Manohari, Analysis and compensation of polarization mode dispersion in single channel, wdm and 32-channel dwdm fiber optic system. Opt.-Int. J. Light Electron Optics. 125(1), 18–24 (2013)

    Article  Google Scholar 

  50. X. He, J. Wang, Z. Pan, A DOP feedback controlling multi-stage electrical PMD compensator in digital coherent receiver. Opt. Fiber Technol. 18(6), 447–451 (2012)

    Article  ADS  Google Scholar 

  51. W.B. Robert. Nonlinear Optics, 3rd (Academic press, 2008)

  52. G.P. Agrawal. Application of Nonlinear Fiber Optics (Academic Press, 2001)

  53. L.B. Du, A.J. Lowery, Practical XPM Compensation Method for coherent Optical OFDM systems. IEEE Photon. Tech. Lett. 22(5), 320–322 (2010)

    Article  Google Scholar 

  54. V. Pechenkin, I.J. Fair, Analysis of four-wave mixing suppression in fiber-optic ofdm ransmission systems with an optical phase conjugation module. J. Opt. Commun. Netw. 2(9), 701–710 (2010)

    Article  Google Scholar 

  55. X. Liu, H. Luan, X. Lin, L. Bo, D. Bo, SPM compensation for long-haul CO-OFDM systems with midlink optical phase conjugation. Opt.-Int. J. Light Electron Opt. 124(13), 1892–1896 (2013)

    Article  Google Scholar 

  56. T. Shang, J. Sun, Y. Li, X. Wang, Study of the all-optical high-speed OFDM transmission system based on MAMSK modulation. Opt. Fiber Technol. 18(6), 440–446 (2012)

    Article  ADS  Google Scholar 

  57. L.X. Hou, Q. Shi, Y.M. Lu, D. Liu, Adaptive fibre nonlinearity precompensation based on optical performance monitoring in coherent optical OFDM transmission systems. Opt.-Int. J. Light Electron Opt. 124(1), 71–73 (2013)

    Article  Google Scholar 

  58. H.S. Chung, S.H. Chang, K. Kim, Companding transform based SPM compensation in coherent optical OFDM transmission. Opt. Express. 19(26), 702–709 (2011)

    Article  Google Scholar 

  59. B.Y.D. Liang, A.J. Lowery, Pilot-based XPM nonlinearity compensator for CO-OFDM systems. Opt. Express. 19(26), 862–867 (2011)

    Article  ADS  Google Scholar 

  60. J. Pan, C.-H. Cheng, Nonlinear electrical compensation for the coherent optical OFDM system. J. Light. Technol. 29(25), 215–221 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Center for Research, Anna University for providing the financial support to carry out the research work under Anna Centenary Research Fellowship scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ilavarasan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilavarasan, T., Meenakshi, M. An overview of fiber dispersion and nonlinearity compensation techniques in optical orthogonal frequency division multiplexing systems. J Opt 44, 255–270 (2015). https://doi.org/10.1007/s12596-015-0254-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-015-0254-9

Keywords

Navigation