Skip to main content

Compensation Techniques for Nonlinear Effects Using NG-RoF-DSP: A Review

  • Chapter
  • First Online:
Machine Learning and Mechanics Based Soft Computing Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1068))

  • 449 Accesses

Abstract

In a radio over fiber (RoF) transmission, the light wave transmitted through an optical fiber is modulated by the radio signal. This technique provides a better path for the transmission of wireless signals over optical media in broadband wireless networks. RoF has developed over the past three decades along with a plethora of studies in the field. However, RoF still encounters several challenges, many of which have already been overcome, yet many still need to be addressed. In newly evolving networks such as 5G and what follows, bandwidth demands, response time, jitter, and fidelity on front-end networks cause significant challenges to RoF systems. Moreover, the movement from the lower microwave scope to the microwave scope was of direct advantage to wireless operations in terms of bandwidth. However, this movement poses more challenges to RoF expansion because combining wired and a wireless (fiber) network into one basic structure is a task of considerable challenge. Therefore, this paper provides an overview of RoF technology with a specific focus on linear and nonlinear effects, mitigation methods, and a discussion of future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, D., & Liu, G. (2017). An overview of 5G requirements. 5G Mobile Communications, 3–26.

    Google Scholar 

  2. Akyildiz, I. F., Nie, S., Lin, S.-C., & Chandrasekaran, M. (2016). 5G roadmap: 10 key enabling technologies. Computer Networks, 106, 17–48.

    Article  Google Scholar 

  3. Deng, Y., Li, Y., Seet, R., Tang, X., & Cai, W. (2017). The server allocation problem for session-based multiplayer cloud gaming. IEEE Transactions of Multimedia, 20(5), 1233–1245.

    Article  Google Scholar 

  4. Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V. C. M., & Guan, Y. L. (2015). Wireless energy harvesting for the Internet of Things. IEEE Communications Magazine, 53(6), 102–108.

    Article  Google Scholar 

  5. Hilario-Tacuri, A., Maldonado, J., Revollo, M., & Chambi, H. (2021). Bit error rate analysis of NOMA-OFDM in 5G systems with nonlinear HPA with memory. IEEE Access, 9, 83709–83717.

    Article  Google Scholar 

  6. Alimi, I. A., Teixeira, A. L., & Monteiro, P. P. (2017). Toward an efficient C-RAN optical fronthaul for the future networks: A tutorial on technologies, requirements, challenges, and solutions. IEEE Communications Surveys & Tutorials, 20(1), 708–769.

    Article  Google Scholar 

  7. König, L. (2019). Analysis of a robot welding system and possible concepts for improvement for a Norwegian SME. NTNU.

    Google Scholar 

  8. Benner, A. F., Ignatowski, M., Kash, J. A., Kuchta, D. M., & Ritter, M. B. (2005). Exploitation of optical interconnects in future server architectures. IBM Journal of Research and Developments, 49(4.5), 755–775.

    Google Scholar 

  9. Kalfas, G., et al. (2019). Next generation fiber-wireless fronthaul for 5G mmWave networks. IEEE Communications Magazine, 57(3), 138–144.

    Article  Google Scholar 

  10. Brackett, C. A., et al. (1993). A scalable multiwavelength multihop optical network: A proposal for research on all-optical networks. Journal of Lightwave Technology, 11(5/6), 736–753.

    Article  Google Scholar 

  11. Musumeci, F., et al. (2018). An overview on application of machine learning techniques in optical networks. IEEE Communications Surveys & Tutorials, 21(2), 1383–1408.

    Article  Google Scholar 

  12. Ganeev, R. A., et al. (2004). Nonlinear refraction in CS2. Applied Physics B, 78(3), 433–438.

    Article  Google Scholar 

  13. Imran, M., Anandarajah, P. M., Kaszubowska-Anandarajah, A., Sambo, N., & Potí, L. (2017). A survey of optical carrier generation techniques for terabit capacity elastic optical networks. IEEE Communications Surveys & Tutorials, 20(1), 211–263.

    Article  Google Scholar 

  14. Menber, T. (2020). Performance evaluation and comparison of optical amplifiers in non-linear effects for long-haul transmission system.

    Google Scholar 

  15. Asha, D. S. (2021). A comprehensive review of Millimeter wave based radio over fiber for 5G front haul transmissions. Indian Journal of Science and Technology, 14(1), 86–100.

    Article  MathSciNet  Google Scholar 

  16. Dat, P. T., Kanno, A., Umezawa, T., Yamamoto, N., Kawanishi, T. (2017). Millimeter- and terahertz-wave radio-over-fiber for 5G and beyond. In 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM) (pp. 165–166).

    Google Scholar 

  17. Garg, D., & Nain, A. (2021). Next generation optical wireless communication: A comprehensive review. Journal of Optical Communications.

    Google Scholar 

  18. Kebe, M., Gadhafi, R., Mohammad, B., Sanduleanu, M., Saleh, H., & Al-Qutayri, M. (2020). Human vital signs detection methods and potential using radars: A review. Sensors, 20(5), 1454.

    Article  Google Scholar 

  19. Lin, C.-T., Chen, J., Shih, P.-T., Jiang, W.-J., & Chi, S. (2010). Ultra-high data-rate 60 GHz radio-over-fiber systems employing optical frequency multiplication and OFDM formats. Journal of Lightwave Technology, 28(16), 2296–2306.

    Article  Google Scholar 

  20. Gaydos, C. A., & Quinn, T. C. (2005). Urine nucleic acid amplification tests for the diagnosis of sexually transmitted infections in clinical practice. Current Opinion in Infectious Diseases, 18(1), 55–66.

    Article  Google Scholar 

  21. Zhang, X., Bian, Z., Yuan, X., Chen, X., & Lu, C. (2020). A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends in Food Science & Technology, 99, 203–216.

    Article  Google Scholar 

  22. Zhong, H., Duan, T., Lan, H., Zhou, M., & Gao, F. (2018). Review of low-cost photoacoustic sensing and imaging based on laser diode and light-emitting diode. Sensors, 18(7), 2264.

    Article  Google Scholar 

  23. Alsos, I. G., et al. (2007). Frequent long-distance plant colonization in the changing Arctic. Science, 316(5831), 1606–1609.

    Google Scholar 

  24. Wen, J., Arakawa, T., & Philo, J. S. (1996). Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Analytical Biochemistry, 240(2), 155–166.

    Article  Google Scholar 

  25. Baeg, K., Binda, M., Natali, D., Caironi, M., & Noh, Y. (2013). Organic light detectors: Photodiodes and phototransistors. Advanced Materials, 25(31), 4267–4295.

    Article  Google Scholar 

  26. Li, Y., Jiang, X., Zhao, G., &Yang, L. (2018) Whispering gallery mode microresonator for nonlinear optics. arXiv Prepr. arXiv1809.04878.

    Google Scholar 

  27. Xiong, W.-W., Chen, J.-Q., Wu, X.-C., & Zhu, J.-J. (2015). Visible light detectors based on individual ZrSe3 and HfSe3 nanobelts. Journal of Material Chemistry C, 3(9), 1929–1934.

    Article  Google Scholar 

  28. Sasikala, V., & Chitra, K. (2018). All optical switching and associated technologies: A review. Journal of Optics, 47(3), 307–317.

    Article  Google Scholar 

  29. Jack, M. W., Collett, M. J., & Walls, D. F. (1995). Enhanced squeezing due to the influence of two instabilities. Physical Review A, 51(4), 3318.

    Article  Google Scholar 

  30. Sirleto, L., & Ferrara, M. A. (2020). Fiber amplifiers and fiber lasers based on stimulated Raman scattering: A review. Micromachines, 11(3), 247.

    Article  Google Scholar 

  31. Marhic, M. E., Andrekson, P. A., Petropoulos, P., Radic, S., Peucheret, C., & Jazayerifar, M. (2015). Fiber optical parametric amplifiers in optical communication systems. Laser & Photonic Review, 9(1), 50–74.

    Article  Google Scholar 

  32. Davoodi, F., & Granpayeh, N. (2012). All optical logic gates: A tutorial. International Journal of Information and Communication Technology Research, 4(3), 65–98.

    Google Scholar 

  33. Cotter, D. (1983). Stimulated Brillouin scattering in monomode optical fiber. Journal of Optical Communication, 4(1), 10–19.

    Article  Google Scholar 

  34. Ajmani, M., & Singh, P. (2015). FWM in WDM system, effects and techniques to minimize: A review. In 2015 Fifth International Conference on Advanced Computing & Communication Technologies (pp. 385–389).

    Google Scholar 

  35. Liao, Y., Song, C., Xiang, Y., & Dai, X. (2020). Recent advances in spatial self-phase modulation with 2D materials and its applications. Annalen der Physik, 532(12), 2000322.

    Article  MathSciNet  Google Scholar 

  36. Tantawy, M., & Abdel-Gawad, H. I. (2020). On multi-geometric structures optical waves propagation in self-phase modulation medium: Sasa-Satsuma equation. The European Physical Journal Plus, 135(11), 1–10.

    Article  Google Scholar 

  37. Folick, A., Min, W., & Wang, M. C. (2011). Label-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy. Current Opinion in Genetics & Development, 21(5), 585–590.

    Article  Google Scholar 

  38. Abed, H. J., Din, N. M., Al-Mansoori, M. H., Fadhil, H. A., & Abdullah, F. (2013). Recent four-wave mixing suppression methods. Optik (Stuttg), 124(15), 2214–2218.

    Article  Google Scholar 

  39. Tsividis, Y. (2010). Event-driven data acquisition and digital signal processing—A tutorial, IEEE Trans. IEEE Transactions on Circuits Systems II: Express Briefs, 57(8), 577–581.

    MathSciNet  Google Scholar 

  40. El-Nahal, F. (2018). Coherent 16 quadrature amplitude modulation (16QAM) optical communication systems. Photonics Letters of Poland, 10(2), 57–59.

    Article  Google Scholar 

  41. Agrell, E., et al. (2016). Roadmap of optical communications. Journal of Optics, 18(6), 63002.

    Article  MathSciNet  Google Scholar 

  42. Bennett, G., Wu, K.-T., Malik, A., Roy, S., & Awadalla, A. (2014). A review of high-speed coherent transmission technologies for long-haul DWDM transmission at 100G and beyond. IEEE Communications Magazine, 52(10), 102–110.

    Article  Google Scholar 

  43. Zhao, J., Liu, Y., & Xu, T. (2019). Advanced DSP for coherent optical fiber communication. Applied Sciences, 9(19), 4192.

    Article  Google Scholar 

  44. Liu, X., Chandrasekhar, S., & Winzer, P. J. (2014). Digital signal processing techniques enabling multi-Tb\/s superchannel transmission: An overview of recent advances in DSP-enabled superchannels. IEEE Signal Processing Magazine, 31(2), 16–24.

    Article  Google Scholar 

  45. Bower, P., & Dedic, I. (2011). High speed converters and DSP for 100G and beyond. Optical Fiber Technology, 17(5), 464–471.

    Article  Google Scholar 

  46. Ip, E., Lau, A. P. T., Barros, D. J. F., & Kahn, J. M. (2008). Coherent detection in optical fiber systems. Optics Express, 16(2), 753–791.

    Article  Google Scholar 

  47. Liu, Y., Choudhary, A., Marpaung, D., & Eggleton, B. J. (2020). Integrated microwave photonic filters. Advances in Optics and Photonics, 12(2), 485–555.

    Article  Google Scholar 

  48. Afshari, H. H., Gadsden, S. A., & Habibi, S. (2017). Gaussian filters for parameter and state estimation: A general review of theory and recent trends. Signal Processing, 135, 218–238.

    Article  Google Scholar 

  49. Matzik, A., & Anwar, S. (2016). Review of electrical filters. International Journal of Innovative Science Engineering and Technology, 3(4), 543–556.

    Google Scholar 

  50. Anwarsha, A., & Narendiranath Babu, T. (2022). A review on the role of tunable Q-factor wavelet transform in fault diagnosis of rolling element bearings. Journal of Vibration Engineering & Technologies, 1–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Jasim Obaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obaid, A.J., Al-Musawi, H.K., Abdl-Nibe, M.A. (2023). Compensation Techniques for Nonlinear Effects Using NG-RoF-DSP: A Review. In: Nguyen, T.D.L., Lu, J. (eds) Machine Learning and Mechanics Based Soft Computing Applications. Studies in Computational Intelligence, vol 1068. Springer, Singapore. https://doi.org/10.1007/978-981-19-6450-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6450-3_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6449-7

  • Online ISBN: 978-981-19-6450-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics