Skip to main content
Log in

Optical fiber systems performance signature based on dispersion compensated methods in dense wavelength division multiplexing systems

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This study has clarified the optical fiber systems performance signature based on the dispersion mitigation techniques in based on the dispersion compensated dense wavelength division multiplexing (WDM) systems in the presence of RZ/NRZ modulation code method. The high-transmission reach-based dense multiplexing channels through the WDM network by OptiSystem software. The long reach dense multiplexing system is modeled at 100 GHz for high bit rates through SMF with possible 200 km transmission. The Dense WDM technique is tested with the input signal variations. Three compensation techniques are employed that are namely symmetrical dispersion compensated fiber, fiber Bragg grating method and Chirped fiber Bragg grating method. The study has demonstrated the efficient compensation methods for upgrading the optical/electrical signal per noise ratio especially with the use of chirped fiber Bragg grating technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

OptiSystem Simulation software.

Code availability

Not applicable.

References

  1. M. Kaur, H. Sarangal, P. Bagga, Dispersion compensation with dispersion compensating fibers (DCF). Int. J. Adv. Res. Comput. Commun. Eng. 4(2), 354–356 (2015)

    Article  Google Scholar 

  2. M. Sharma, P.K. Raghav, R. Chaudhary, A. Sharma, Analysis on dispersion compensation in WDM optical network using pre, post and symmetrical DCF based on optisystem. MIT Int. J. Electron. Commun. Eng. 4(1), 58–63 (2014)

    Google Scholar 

  3. Md. Ahasan Habib, Md. Shamim Anower, A. AlGhamdi, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, “Efficient way for detection of alcohols using hollow core photonic crystal fiber sensor.” Opt. Rev. 28(2), 383–392 (2021)

    Article  Google Scholar 

  4. D. Dey, Neha, Compensation in optical fiber WDM system using different compensation techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5), 744–751 (2014)

    Google Scholar 

  5. K. Kumar, A.K. Jaiswal, M. Kumar, N. Agrawal, Performance analysis of dispersion compensation using Fiber Bragg Grating (FBG) in optical communication. Int. J. of Curr. Eng. Technol. 4(3), 16–30 (2014)

    Google Scholar 

  6. S. Kumar, A.K. Jaiswal, Er. Mukesh Kumar, Er. Rohini Saxena, Performance analysis of dispersion compensation in long haul optical fiber with DCF. IOSR J. Electron. Commun. Eng. 6(6), 19–23 (2013)

    Article  Google Scholar 

  7. V. Sorathiya, S. Lavadiya, B.S. Parmar, S. Baxi, T. Dhankot, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, Tunable squared patch based graphene metasurface infrared polarizer. Appl. Phys. B 128(2), 247–260 (2022)

    Article  Google Scholar 

  8. S. Lavadiya, V. Sorathiya, O.S. Faragallah, H.S. El-Sayed, M.M.A. Eid, A.N.Z. Rashed, Infrared graphene assisted multi-band tunable absorber. Opt. Quantum Electron. 54(1), 145–165 (2022)

    Google Scholar 

  9. A.A.M. Bulbul, A.N.Z. Rashed, H.M. El-Hageen, A.M. Alatwi, Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel. Alex. Eng. J. 60(6), 5419–5430 (2021)

    Article  Google Scholar 

  10. T. Panda, R.K. Mishra, K. Parakram, A. Sinha, Performance comparison of dispersion compensation in a pre, post and symmetrical arrangement using DCF for long haul optical communication. Int. J. Eng. Technol. 37(1), 14–20 (2016)

    Google Scholar 

  11. J. Meenakshi, J. Malhotra, Comparative analysis of different dispersion compensation techniques on 40 Gbps DWDM system. Int. J. Technol. Enhanc. Emerg. Eng. Res. 3(6), 34–38 (2015)

    Google Scholar 

  12. S. Kumar, A.K. Jaiswal, M. Er, E.R. Kumar, R. Saxena, Performance analysis of dispersion compensation in long haul optical fiber with DCF. IOSR J. Electron. Commun. Eng. (IOSR-JECE) 6(6), 19–23 (2013)

    Article  Google Scholar 

  13. A.S. Verma, A.K. Jaiswal, M. Kumar, An improved methodology for dispersion compensation and synchronization in optical fiber communication networks. Int. J. Emerg. Technol. Adv. Eng. 3(5), 769–775 (2013)

    Google Scholar 

  14. Y. Zhou, Y. Shao, Z. Wang, C. Li, J. Zhou, W. Ma, Research on dispersion compensation of 40 GB/s optical duo-binary coded transmission system. Opt. Photonics J. 6(1), 190–195 (2016)

    Article  ADS  Google Scholar 

  15. S.P. Lavadiya, V. Sorathiya, S. Kanzariya, B. Chavda, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, Design and verification of novel low profile miniaturized pattern and frequency tunable microstrip patch antenna using two PIN diodes. Brazilian J. Phys. 51(3), 1303–1313 (2021)

    Article  ADS  Google Scholar 

  16. V. Sorathiya, S. Lavadiya, O.S. Faragallah, M.M.A. Eid, A.N.Z. Rashed, D shaped dual core photonics crystal based refractive index sensor using graphene–titanium–silver materials for infrared frequency spectrum. Opt. Quantum Electron. 54(4), 1123–1134 (2022)

    Google Scholar 

  17. S. Haider, D.K. Srivastava, R. Kumar, Performance analysis of effect of fiber length, input power and attenuation coefficient on dispensation compensation using FBG. Int. J. Adv. Res. Comput. Commun. Eng. 5(9), 493–500 (2016)

    Google Scholar 

  18. A.N.Z. Rashed, S.K. Hasane Ahammad, M.G. Daher, V. Sorathiya, A. Siddique, S. Asaduzzaman, H. Rehana, N. Dutta, S.K. Patel, V.O. Nyangaresi, R.H. Jibon, H.S. Abdelhamid, Spatial single mode laser source interaction with measured pulse based parabolic index multimode fiber. J. Opt. Commun. 43(2), 66–80 (2022)

    Google Scholar 

  19. G. Singh, J. Saxena, G. Kaur, Dispersion compensation using FBG and DCF in 120 Gbps WDM system. Int. J. Eng. Sci. Innov. Technol. (IJESIT) 3(6), 514–519 (2014)

    Google Scholar 

  20. P. Gopika, S.A. Thomas, Performance analysis of dispersion compensation using FBG and DCF in WDM Systems. Int. J. Adv. Res. Comput. Commun. Eng. 4(10), 223–226 (2015)

    Google Scholar 

  21. D. Dey, Neha, “compensation in optical fiber WDM system using different compensation techniques.” Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(5), 744–751 (2014)

    Google Scholar 

  22. A.S. Raheem, Dispersion In different single mode optical fiber materials at different temperatures. Al-Qadisiya J. Eng. Sci. 4(3), 381–392 (2011)

    Google Scholar 

  23. M.A. Hussain, M.J. Abdul-Razzak, A.H. Ali, Optical design of flattened single mode optical fiber utilizing temperature dependence refractive indices of different materials. J. Eng. Dev. 17(2), 184–192 (2013)

    Google Scholar 

  24. A.N.Z. Rashed, High efficiency laser power transmission with all Optical amplification for high transmission capacity submarine cables. J. Russ. Laser Res. 34(6), 603–613 (2013)

    Article  Google Scholar 

  25. A.N.Z. Rashed, High performance photonic devices for multiplexing/demultiplexing applications in multi band operating regions. J. Comput. Theor. Nanosci. 9(4), 522–531 (2012)

    Article  Google Scholar 

  26. A.N.Z. Rashed, High reliability optical interconnections for short range applications in high speed Optical communication systems. J. Opt. Laser Technol. 48(6), 302–308 (2013)

    Article  ADS  Google Scholar 

  27. G. Ghosh, Sellemier coefficients and dispersion of thermo-optic coefficients for some optical glasses. Appl. Opt. 36(7), 1540–1546 (1997)

    Article  ADS  Google Scholar 

  28. R.H. Jibon, A.A.M. Bulbul, A.A. Nahid, O.S. Faragallah, M. Baz, M.M.A. Eid, A.N.Z. Rashed, Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide. Opt. Rev. 28(2), 564–572 (2021)

    Article  Google Scholar 

  29. M.M. Eid, A.E. Mohammed, A.N. Rashed, Different soliton pulse order effects on the fiber communication systems performance evaluation. Indones. J. Electr. Eng. Comput. Sci. 23(3), 1485–1492 (2021)

    Google Scholar 

  30. G. Ghosh, H. Yajima, Pressure-dependent sellmeier coefficients and material dispersions for silica fiber glass. J. Lightwave Technol. 16(11), 2002–2005 (1998)

    Article  ADS  Google Scholar 

  31. A.N.Z. Rashed, M.A. Metwae’e, Operation performance characteristics of vertical cavity surface emitting lasers (VCSELs) under high thermal neutrons irradiated fields. J. Russ. Laser Res. 34(1), 1–8 (2013)

    Article  Google Scholar 

  32. A.N.Z. Rashed, Optical fiber communication cables systems performance under harmful gamma irradiation and thermal environment effects. IET Commun. 7(5), 448–455 (2013)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to this work.

Corresponding authors

Correspondence to Ramachandran Thandaiah Prabu, Shaik Hasane Ahammad, Md. Amzad Hossain or Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

No competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houssien, F.M.A.M., Arjunan, M., Narayanasamy, P. et al. Optical fiber systems performance signature based on dispersion compensated methods in dense wavelength division multiplexing systems. J Opt (2023). https://doi.org/10.1007/s12596-023-01454-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01454-w

Keywords

Navigation