Skip to main content
Log in

Approaches for Groundwater Vulnerability Assessment in Relation to Pollution Potential: A Critical Evaluation and Challenges

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Escalated groundwater contamination around the world developed the idea of aquifer vulnerability, which has widely been employed globally to safeguard groundwater from contamination. Several extensive studies have been done to evaluate the degree of groundwater vulnerability using various techniques. However, a comprehensive assessment of existing literature in order to identify major research gaps associated with aquifer vulnerability is still required. The current study provides a critical overview of several groundwater risk assessment methodologies, including the GIS-based DRASTIC and modified DRASTIC methods, application of Artificial Intelligence (AI) and Machine Learning techniques, and integrated approach for both intrinsic and specific vulnerability assessment. The study discusses validation of DRASTIC model and its comparison with a few other methodologies as well. The paper also highlights the international approach (time dimension in groundwater vulnerability, integrated process based and isotopic studies, etc.) that needs to be practiced rigorously on a larger scale in India. A descriptive summary of the literature indicates that a multidisciplinary and integrated framework such as understanding contaminant type, uncertainties in vadose zone need to be implemented in a much more comprehensive way, especially in India. A conceptual framework that is both reasonably adaptable and scientifically sound must be created for specific vulnerability assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Abadi, A. M., Al-Shamma’a, A. M. and Aljabbari, M. H. (2014). A GIS-based DRASTIC model for assessing intrinsic groundwater vulnerability in northeastern Missan governorate, southern Iraq. Appl. Water Sci., v. 7(1), pp. 89–101. doi: https://doi.org/10.1007/s13201-014-0221-7

    Article  Google Scholar 

  • Al Kuisi, M., El-Naqa, A. and Hammouri, N. (2006) Vulnerability mapping of shallow groundwater aquifer using SINTACS model in the Jordan Valley area, Jordan. Environ. Geol, v.50(5), pp.651–667. doi: https://doi.org/10.1007/s00254-006-0239-8.

    Article  Google Scholar 

  • Aller, L., Bennet, T., Lehr, J. H. and Petty, R. J. (1987) DRASTIC: A standardized system for evaluating ground water pollution potential using hydro geologic settings. USEPA document no. EPA/600/2-85-018.

  • Aquifer system of India, CGWB (2012) Aquifer system of India. Central Ground Water Boardm 92p.

  • Arshad, I. and Umar, R. (2020) Status of urban hydrogeology research with emphasis on India. Hydrogeol. Jour., v.28(2), pp.477–490. doi:https://doi.org/10.1007/s10040-019-02091-z.

    Article  Google Scholar 

  • Arya, S., Subramani, T., Vennila, G. and Roy, P.D. (2020) Groundwater vulnerability to pollution in the semi-arid Vattamalaikarai River Basin of south India thorough DRASTIC index evaluation. Geochemistry, v.80(4), pp.1–9. doi: https://doi.org/10.1016/j.chemer.2020.125635.

    Article  Google Scholar 

  • Awawdeh, M.M. and Jaradat, R.A. (2010) Evaluation of aquifers vulnerability to contamination in the Yarmouk River basin, Jordan, based on DRASTIC method. Arab. Jour. Geosci., v.3(3), pp.273–282. doi:https://doi.org/10.1007/s12517-009-0074-9.

    Article  Google Scholar 

  • BGS. (2000) Groundwater Quality: Southern India, British Geological Survey.

  • Canora, F., Muzzillo, R. and Sdao, F. (2022) Groundwater Vulnerability Assessment in the Metaponto Coastal Plain (Basilicata, Italy). Water, v.14(12), pp.1–22. doi:https://doi.org/10.3390/w14121851.

    Article  Google Scholar 

  • Chakraborty, S., Paul, P.K. and Sikdar, P.K. (2007) Assessing aquifer vulnerability to arsenic pollution using DRASTIC and GIS of North Bengal Plain: A case study of English Bazar Block, Malda District, West Bengal, India. Jour. Spat. Hydrol., v.7(1), pp.101–121.

    Google Scholar 

  • Civita, M.V. (2010) The Combined Approach When Assessing and Mapping Groundwater Vulnerability to Contamination. Jour. Water Resour. Prot., v.2, pp.14–28. doi:https://doi.org/10.4236/jwarp.2010.21003

    Article  Google Scholar 

  • Civita, M (1990) Legenda unificata per le Carte della vulnerabilita ‘dei corpi idrici sotterranei/ Unified legend for the aquifer pollution vulnerability Maps. Studi sulla Vulnerabilita ‘degli Acquiferi, 1 (Append.), Pitagora Edit. Bologna, p.13.

    Google Scholar 

  • Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldscheider, N., Neale, S., … and Zwahlen, F. (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol. Jour., v.10(2), pp.340–345. doi: https://doi.org/10.1007/s10040-001-0185-1.

    Article  Google Scholar 

  • Dangar, S., Asoka, A. and Mishra, V. (2021) Causes and implications of groundwater depletion in India: A review. Jour. Hydrol., v.596, pp.1–21. doi: https://doi.org/10.1016/j.jhydrol.2021.126103.

    Article  Google Scholar 

  • Denny, S.C., Allen, D.M. and Journeay, J.M. (2006) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol. Jour., v.15(3), pp.483–493. doi: https://doi.org/10.1007/s10040-006-0102-8.

    Article  Google Scholar 

  • Doerfliger, N., Jeannin, P.Y. and Zwahlen, F. (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol, v.39(2), pp.165–176. doi: https://doi.org/10.1007/s002540050446.

    Article  Google Scholar 

  • Duttagupta, S., Mukherjee, A., Das, K., Dutta, A., Bhattacharya, A. and Bhattacharya, J. (2020) Groundwater vulnerability to pesticide pollution assessment in the alluvial aquifer of Western Bengal basin, India using overlay and index method. Geochemistry, v.80(4), pp.2–8. doi: https://doi.org/10.1016/j.chemer.2020.125601

    Article  Google Scholar 

  • Elzain, H. E., Chung, S. Y., Senapathi, V., Sekar, S., Lee, S. Y., Roy, P. D., … and Sabarathinam, C. (2022) Comparative study of machine learning models for evaluating groundwater vulnerability to nitrate contamination. Ecotoxicol. Environ. Saf., v.229, pp.1–10. doi: https://doi.org/10.1016/j.ecoenv.2021.113061

    Article  Google Scholar 

  • European Commission, Directorate-General for Research and Innovation, COST Action 620: vulnerability and risk mapping for the protection of carbonate (karst) aquifers: final report, Zwahlen, F. (Ed.), Publications Office, 2004.

  • Foster, S.S.D. (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvenboden, W., van Waegeningh, H.G. (Ed.), Vulnerability of Soil and Groundwater to Pollutants. TNO Comm. on Hydrol. Research, The Hague, The Netherlands. Proceeding and Information, no.38, pp.69–86.

    Google Scholar 

  • Fritch, T.G., McKnight, C.L., YeldermanJr, J C., and Arnold, J.G. (2000) An aquifer vulnerability assessment of the Paluxy aquifer, central Texas, USA, using GIS and a modified DRASTIC approach. Environ. Managmt., v.25(3), pp.337–345. doi: https://doi.org/10.1007/s002679910026

    Article  Google Scholar 

  • Garewal, S.K., Vasudeo, A.D., Landge, V.S. and Ghare, A.D. (2017) A GIS-based Modified DRASTIC (ANP) method for assessment of groundwater vulnerability: a case study of Nagpur city, India. Water Qual. Res. Jour., v.52(2), pp.121–135. doi:https://doi.org/10.2166/wqrj.2017.046.

    Article  Google Scholar 

  • GEC (2015) Ground Water Resource Estimation Committee.

  • Gogu, R.C. and Dassargues, A. (2000) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol. Jour., v.8(3), pp.337–345. doi: https://doi.org/10.1007/s100400050019.

    Article  Google Scholar 

  • Gogu, R.C., Hallet, V. and Dassargues, A. (2003) Comparison of aquifer vulnerability assessment techniques. Application to the Néblon river basin (Belgium). Environ. Geol., v.44(8), pp.881–892. doi: https://doi.org/10.1007/s00254-003-0842-x

    Google Scholar 

  • Goldscheider, N. I. C. O., Klute, M., Sturm, S. and Hötzl, H. (2000). The PI method–a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol., v.46(3), pp.157–166.

    Google Scholar 

  • Hamza, S.M., Ahsan, A., Imteaz, M.A., Rahman, A., Mohammad, T.A. and Ghazali, A.H. (2014) Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environ. Earth Sci., v.73, pp.3063–3076. doi: https://doi.org/10.1007/s12665-014-3601-2.

    Article  Google Scholar 

  • Hiscock, K. M., Lovett, A. A., Brainard, J. S., & Parfitt, J. P. (1995). Groundwater vulnerability assessment: two case studies using GIS methodology. Quart. Jour. Eng. Geol. Hydrogeol., v.28(2), pp.179–194. doi: https://doi.org/10.1144/GSL.QJEGH.1995.028.P2.09

    Article  Google Scholar 

  • Ibe, K.M., Nwankwor, G.I. and Onyekuru, S.O. (2001) Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri, Southeastern Nigeria. Environ. Monit. Assess., v.67(3), pp.323–360. doi:https://doi.org/10.1023/A:1006358030562.

    Article  Google Scholar 

  • Iqbal, J., Gorai, A.K., Katpatal, Y.B. and Pathak, G. (2015) Development of GIS-based fuzzy pattern recognition model (modified DRASTIC model) for groundwater vulnerability to pollution assessment. Int. Jour. Environ. Sci. Tech., v.12(10), pp.3161–3174. doi:https://doi.org/10.1007/s13762-014-0693-x

    Article  Google Scholar 

  • Jenifer, M.A. and Jha, M.K. (2018) Comparative evaluation of GIS-based models for mapping aquifer vulnerability in hard-rock terrains. Environ. Earth Sci., v.77(19), pp.1–26. doi:https://doi.org/10.1007/s12665-018-7821-8.

    Article  Google Scholar 

  • Kaliraj, S., Chandrasekar, N., Peter, T. S., Selvakumar, S. and Magesh, N.S. (2014) Mapping of coastal aquifer vulnerable zone in the south west coast of Kanyakumari, South India, using GIS-based DRASTIC model. Environ. Monit. Assess., v.187(1), pp.1–27. doi:https://doi.org/10.1007/s10661-014-4073-2.

    Google Scholar 

  • Kazakis, N. and Voudouris, K.S. (2015) Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. Jour. Hydrol., v.525, pp.13–25. doi: https://doi.org/10.1016/j.jhydrol.2015.03.035.

    Article  Google Scholar 

  • Kazakis, N., Busico, G., Colombani, N., Mastrocicco, M., Pavlou, A. and Voudouris, K. (2019) GALDIT-SUSI a modified method to account for surface water bodies in the assessment of aquifer vulnerability to seawater intrusion. Jour. Environ. Managmt., v.235, pp.257–265. doi: https://doi.org/10.1016/j.jenvman.2019.01.069

    Article  Google Scholar 

  • Khan, A., Khan, H.H., Umar, R. and Khan, M.H. (2014) An integrated approach for aquifer vulnerability mapping using GIS and rough sets: study from an alluvial aquifer in North India. Hydrogeol. Jour., v.22(7), pp.1561–1572. doi:https://doi.org/10.1007/s10040-014-1147-8

    Article  Google Scholar 

  • Khan, A., Khan, H.H. and Umar, R. (2017) Impact of land-use on groundwater quality: GIS-based study from an alluvial aquifer in the western Ganges basin. Appl. Water Sci., v.7 pp.4593–4603. doi:https://doi.org/10.1007/s13201-017-0612-7.

    Article  Google Scholar 

  • Konikow, L.F. (2011) Contribution of global groundwater depletion since 1900 to sea level rise. Geophys. Res. Lett., v.38(17). pp.1–5. doi: https://doi.org/10.1029/2011GL048604.

    Article  Google Scholar 

  • Lad, S., Ayachit, R., Kadam, A. and Umrikar, B. (2018) Groundwater vulnerability assessment using DRASTIC model: a comparative analysis of conventional, AHP, Fuzzy logic and Frequency ratio method. Model. Earth Syst. Environ., v.5(2), pp.543–553. doi:https://doi.org/10.1007/s40808-018-0545-7.

    Article  Google Scholar 

  • Leal, J.A.R. and Castillo, R.R. (2003) Aquifer vulnerability mapping in the Turbio river valley, Mexico: a validation study. Geofis. Internat., v.42(1), pp.141–156.

    Google Scholar 

  • Liang, J., Li, Z., Yang, Q., Lei, X., Kang, A. and Li, S. (2019) Specific vulnerability assessment of nitrate in shallow groundwater with an improved DRSTIC-LE model. Ecotoxicol. Environ. Saf., v.174, pp.649–657. doi: https://doi.org/10.1016/j.ecoenv.2019.03.024

    Article  Google Scholar 

  • Lodwick, W. A., Monson, W. & Svoboda, L. (1990) Attribute error and sensitivity analysis of map operations in geographical information systems: suitability analysis. Int. Jour. Geogr. Inform. Syst., v.4(4), pp.413–42

    Google Scholar 

  • Machiwal, D., Jha, M.K., Singh, V.P. and Mohan, C. (2018) Assessment and mapping of groundwater vulnerability to pollution: Current status and challenges. Earth-Sci. Rev., v.185, pp.901–927. https://doi.org/10.1016/j.earscirev.2018.08.009.

    Article  Google Scholar 

  • Medici, G., Engdahl, N.B. and Langman, J.B. (2021) A basin-scale groundwater flow model of the Columbia Plateau regional aquifer system in the Palouse (USA): Insights for aquifer vulnerability assessment. Int. Jour. Environ. Res., v.15, pp.299–312. doi: https://doi.org/10.1007/s41742-021-00318-0.

    Article  Google Scholar 

  • Mukherjee, A., Saha, D., Harvey, C.F., Taylor, R.G., Ahmed, K. M. and Bhanja, S.N. (2015) Groundwater systems of the Indian sub-continent. Jour. Hydrol., v.4, pp.1–14. doi: https://doi.org/10.1016/j.ejrh.2015.03.005.

    Google Scholar 

  • Nadiri, A.A., Gharekhani, M., Khatibi, R., Sadeghfam, S. and Moghaddam, A.A. (2017) Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Sci. Total Environ., v.574, pp.691–706. doi: https://doi.org/10.1016/j.scitotenv.2016.09.093.

    Article  Google Scholar 

  • Napolitano, P. and Fabbri, A.G. (1996) Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS. IAHS Publications-Series of Proceedings and Reports-Intern Assoc. Hydrol. Sci., v.235, pp.559–566.

    Google Scholar 

  • Oke, S.A. (2017) An overview of aquifer vulnerability. In: Bailey H. (Ed.), Aquifers. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Panagopoulos, G.P., Antonakos, A.K. and Lambrakis, N.J. (2006) Optimization of the DRASTIC method for groundwater vulnerability assessment via the use of simple statistical methods and GIS. Hydrogeol. Jour., v.14, pp.894–911.

    Article  Google Scholar 

  • Pavlis, M., Cummins, E. and McDonnell, K. (2010) Groundwater vulnerability assessment of plant protection products: a review. Hum. Ecol. Risk Assess., v.16(3), pp.621–650. doi: https://doi.org/10.1080/10807031003788881.

    Article  Google Scholar 

  • Prusty, P. and Farooq, S.H. (2020) Seawater intrusion in the coastal aquifers of India-A review. Hydrol. Res., v.3, pp.61–74. doi: https://doi.org/10.1016/j.hydres.2020.06.001

    Google Scholar 

  • Raju, N.J., Ram, P. and Gossel, W. (2014) Evaluation of groundwater vulnerability in the lower Varuna catchment area, Uttar Pradesh, India using AVI concept. Jour. Geol. Soc. India, v.83(3), pp.273–278. doi:https://doi.org/10.1007/s12594-014-0039-9

    Article  Google Scholar 

  • Rao, D., Naik, A., Jain, P.K., Vinod Kumar, S.K. and Dhanamjaya Rao, E.N. (2018) Assessment of vulnerability zones for ground water pollution using GIS-DRASTIC-EC model: A field-based approach. Jour. Earth Syst. Sci., v.127(4), pp.1–24. doi:https://doi.org/10.1007/s12040-018-0944-1

    Google Scholar 

  • Ravbar, N. and Goldscheider, N. (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsologica, v.36(3), pp.397–411. doi:https://doi.org/10.3986/ac.v36i3.174.

    Article  Google Scholar 

  • Saha, D., Marwaha, S., Mukherjee, A. (2018) Groundwater Resources and Sustainable Management Issues in India. In: Saha, D., Marwaha, S., Mukherjee, A. (eds) Clean and Sustainable Groundwater in India. Springer Hydrogeology. Springer, Singapore. doi: https://doi.org/10.1007/978-981-10-4552-3_1

    Chapter  Google Scholar 

  • Saha, D. and Alam, F. (2014) Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intense agriculture area of the Gangetic plains, India. Environ. Monit. Assess., v.186(12), pp.8741–8763. doi:https://doi.org/10.1007/s10661-014-4041-x

    Article  Google Scholar 

  • Saidi, S., Bouri, S., Dhia, H.B. and Anselme, B. (2011). Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: application to Souassi aquifer, Tunisian Sahel. Agric. Water Managmt., v.98(10), pp.1671–1682. doi: https://doi.org/10.1016/j.agwat.2011.06.005

    Article  Google Scholar 

  • Saranya, T. and Saravanan, S. (2021) Evolution of a hybrid approach for groundwater vulnerability assessment using hierarchical fuzzy-DRASTIC models in the Cuddalore Region, India. Environ. Earth. Sci., v.80(5), pp.1–25. doi: https://doi.org/10.1007/s12665-021-09479-9.

    Article  Google Scholar 

  • Shah, T. (2012) Community response to aquifer development: distinct patterns in India’s alluvial and hard rock aquifer areas. Irrig. Drain., v.61, pp.14–25. doi: https://doi.org/10.1002/ird.1656.

    Article  Google Scholar 

  • Shirazi, S. M., Imran, H.M. and Akib, S. (2012) GIS-based DRASTIC method for groundwater vulnerability assessment: a review. Jour. Risk Res., v.15(8), pp.991–1011. doi:https://doi.org/10.1080/13669877.2012.686053.

    Article  Google Scholar 

  • Singh, A., Srivastav, S. K., Kumar, S. and Chakrapani, G. J. (2015) A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ. Earth. Sci., v.74(7), pp.5475–5490. doi: https://doi.org/10.1007/s12665-015-4558-5

    Article  Google Scholar 

  • Sishodia, R.P., Shukla, S., Graham, W.D., Wani, S. P., Jones, J. W. and Heaney, J. (2017) Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed. Adv. Water Resour, v.110, pp.459–475. doi: https://doi.org/10.1016/j.advwatres.2017.05.014.

    Article  Google Scholar 

  • Sorichetta, A., Ballabio, C., Masetti, M., RobinsonJr., G.R. and Sterlacchini, S. (2013) A Comparison of Data Driven Groundwater Vulnerability Assessment Methods. Groundwater, v.51(6), pp. 866–879. doi:https://doi.org/10.1111/gwat.12012.

    Article  Google Scholar 

  • Stevenazzi, S., Masetti, M., Nghiem, S.V. and Sorichetta, A. (2015) Groundwater vulnerability maps derived from a time-dependent method using satellite scatterometer data. Hydrogeol. Jour., v.23(4), pp.631–647. doi: https://doi.org/10.1007/s10040-015-1236-3

    Article  Google Scholar 

  • Sujitha, V., Purandara, B.K., Shivapur, A.V. and Davithuraj, J. (2020) Assessment of aquifer vulnerability using GALDIT model—a case study. Jour. Geol. Soc. India, v.95, pp.507–512. doi: https://doi.org/10.1007/s12594-020-1469-1

    Article  Google Scholar 

  • Taghavi, N., Niven, R.K., Paull, D. J. and Kramer, M. (2022) Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ., v.822, pp.1–13. doi:https://doi.org/10.1016/j.scitotenv.2022.153486

    Article  Google Scholar 

  • Taheri, K., Taheri, M. and Komail, M.S. (2017) Sin–DRASTIC: a modified vulnerability mapping method for alluvial aquifer hosted by karst in the north of Hamadan province, west of Iran. EuroKarst 2016, Neuchâtel. Springer, Cham, pp.255–271. doi:https://doi.org/10.1007/978-3-319-45465-8_25.

    Google Scholar 

  • Thapa, R., Gupta, S., Guin, S. and Kaur, H. (2018) Sensitivity analysis and mapping the potential groundwater vulnerability zones in Birbhum district, India: a comparative approach between vulnerability models. Water Science, v.32(1), pp.44–66. doi: https://doi.org/10.1016/j.wsj.2018.02.003.

    Article  Google Scholar 

  • Tirkey, P., Gorai, A.K. and Iqbal, J. (2013) AHP-GIS based DRASTIC model for groundwater vulnerability to pollution assessment: a case study of Hazaribag district, Jharkhand, India. Internat. Jour. Environ. Protec., v.2(3), pp.20–31.

    Google Scholar 

  • Umar, R., Ahmed, I. and Alam, F. (2009). Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh. Jour. Geol. Soc. India., v.73(2), pp.193–201. doi:https://doi.org/10.1007/s12594-009-0075-z.

    Article  Google Scholar 

  • Umar, R., Khan, M.M.A., Ahmed, I. and Ahmed, S. (2008) Implications of Kali-Hindon inter-stream aquifer water balance for groundwater management in western Uttar Pradesh. Jour. Earth Syst. Sci., v.117(1), pp.69–78.

    Article  Google Scholar 

  • Vías, J.M., Andreo, B., Perles, J.M., Carrasco, F. and I. Vadillo, (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Application in two pilot sites in Southern Spain. Hydrogeol. Jour., v.14(6), pp.912–925. doi: https://doi.org/10.1007/s10040-006-0023-6

    Google Scholar 

  • Vrba, J. and Zeporozec, A. (1994) Guidebook on mapping Groundwater vulnerability. Internat. Contrib. Hydrogeol., v.16, 131, pp.4, 69–70

    Google Scholar 

  • Wang, J.L. and Yang, Y.S. (2008) An approach to catchment scale groundwater nitrate risk assessment from diffuse agricultural sources: a case study in the Upper Bann, Northern Ireland. Hydrol. Process., v.22(21), pp.4274–4286. doi:https://doi.org/10.1002/hyp.7036.

    Article  Google Scholar 

  • Yu, C., Yao, Y., Hayes, G., Zhang, B. and Zheng, C. (2010) Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Sci. Total Environ., v.408(24), pp.6108–6116. doi: https://doi.org/10.1016/j.scitotenv.2010.09.002.

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges grant of the Maulana Azad National Fellowship from the University Grant Commission (UGC). The authors would like to thanks the editor and anonymous reviewer for the valuable suggestions which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Afreen Haidery, Rashid Umar or Naseem us Saba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haidery, A., Umar, R. & us Saba, N. Approaches for Groundwater Vulnerability Assessment in Relation to Pollution Potential: A Critical Evaluation and Challenges. J Geol Soc India 99, 1149–1157 (2023). https://doi.org/10.1007/s12594-023-2440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2440-8

Navigation