Skip to main content
Log in

Efficacy of Landslide Susceptibility Maps Prepared Using Different Bivariate Methods: Case Study from Mussoorie Township, Garhwal Himalaya

  • Original Article
  • Published:
Journal of the Geological Society of India

Abstract

Four bivariate methods viz frequency ratio, weight of evidence, Yule’s coefficients and information value were utilized for the preparation of the landslide susceptibility map of the hilly township of Mussoorie. Two scenarios, one with partitioning landslide inventory prepared till 2019 with 70% landslides, and another with all the active landslides till 2019 were used for the preparation of landslide susceptibility maps. In order to understand the efficacy and the reliability of each of the bivariate approach used under both the scenarios, the maps thus obtained were overlaid with the landslides that occurred in the area during excessive rainfall of 2020. It has been noted that the landslide susceptibility maps prepared using four different bivariate methods exhibit more or less similar results, nevertheless of all the four methods used, information value method indicate that more than twice the area (∼38%) fall in high and very high landslide susceptible zones in scenario-I. The scenario-II exhibits higher percentage of area falling in high and very high landslide susceptible zones for all the methods as compared to scenario-I, still the Information value indicate the highest percent of area (∼31%) falling in the high and very high landslide susceptibility zones. The validation of the maps prepared using scenario-I exhibit 58–75% of the 2020 landslides occur in high and very high landslide susceptibility zones, whereas in scenario-II, 57–72% of the 2020 landslides falls in high and very high landslide susceptibility zones. Finally the weight of evidence method and information value method indicate the higher prediction accuracy under both the scenarios

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auden, J. B. (1934) The geology of the Krol belt. Rec. Geol. Surv. India, v.67(4), pp.357–454.

    Google Scholar 

  • Baeza, C. and Corominas, J. (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf. Process. Landforms, v.26, pp.1251–1263. doi:https://doi.org/10.1002/esp.263

    Article  Google Scholar 

  • Banerjee, D.M., Schidlowski, M., Siebert, F., and Brasier, M.D. (1997) Geochemical changes across the Proterozoic–Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeogr. Palaeocl., v.132(1–4), pp.183–194.

    Article  Google Scholar 

  • Barella, C.F., Sobreira, F.G. and Zêzere, J.L. (2019) A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil. Bull. Engg. Geol. Environ., v.78(5), pp.3205–3221.

    Article  Google Scholar 

  • Brabb, E.E. (1984) Innovative approaches to landslide hazard and risk mapping. In: International Landslide Symposium Proceedings, Toronto, Canada, v.1, pp.17–22.

  • Bui, D.T., Lofman, O., Revhaug, I. and Dick, O. (2011) Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Nat. Hazards, v.59, pp.1413–1444. doi:https://doi.org/10.1007/s11069-011-9844-2

    Article  Google Scholar 

  • Carrara, A. (1983) Multivariate models for landslide hazard evaluation. Jour. Internal Assoc. Math. Geol., v.15, pp.403–426. doi:https://doi.org/10.1007/BF01031290

    Article  Google Scholar 

  • Carrara, A., Cardinali, M., Guzzetti, F. and Reichenbach, P. (1995) GIS technology in mapping landslide hazard. In: Geographical information systems in assessing natural hazards. Springer, Dordrecht, pp.135–175.

  • Champatiray, P. K. (1996) Landslide hazard zonation using fuzzy logic and probability analysis in western Himalayas; Project report under IIRS-ITC Programme, Internal Publication, ITC, Netherlands.

    Google Scholar 

  • Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T. and Nishino, K. (2008) GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol., v.54, pp.311–324. doi:https://doi.org/10.1007/s00254-007-0818-3

    Article  Google Scholar 

  • Das, I., Stein, A., Kerle, N. and Dadhwal, V.K. (2012) Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology, v.179, pp.116–125. doi:https://doi.org/10.1016/j.geomorph.2012.08.004

    Article  Google Scholar 

  • Deng, X., Li, L. and Tan, Y. (2017) Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS Internat. Jour. Geo-Information, v.6(4), pp.103.

    Article  Google Scholar 

  • Ding, Q., Chen, W. and Hong, H. (2017) Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Int., v.32, pp.619–639. doi:https://doi.org/10.1080/10106049.2016.1165294

    Google Scholar 

  • Farooq, S. and Akram, M.S. (2021).Comparison of data-driven landslide susceptibility assessment using weight of evidence, information value, frequency ratio and certainty factor methods. Act. Geody. et Geromater., v.18(3), pp.01–318.

    Google Scholar 

  • Ghosh, S., Carranza, E.J.M., van Westen, C.J., Jetten, V.G. and Bhattacharya, D.N. (2011) Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the darjeeling himalayas (india). Geomorphology, v.131, pp.35–56. doi:https://doi.org/10.1016/j.geomorph.2011.04.019

    Article  Google Scholar 

  • Gupta, V., and Ahmed, I. (2007) The effect of pH of water and mineralogical properties on the slake durability (degradability) of different rocks from the Lesser Himalaya, India. Engg. Geol., v.95(3–4), pp.79–87.

    Article  Google Scholar 

  • Gupta, V., Bhasin, R.K., Kaynia, A.M., Kumar, V., Saini, A.S., Tandon, R.S., and Pabst, T. (2016) Finite element analysis of failed slope by shear strength reduction technique: a case study for Surabhi Resort Landslide, Mussoorie township, Garhwal Himalaya. Geomatics, Nat. Hazards and Risk, v.7(5), pp.1677–1690.

    Article  Google Scholar 

  • Gupta, V., Kumar, S., Kaur, R., and Tandon, R. S. (2022) Regional-scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya, India. Jour. Earth Syst. Sci., v.131(1), pp.1–18.

    Google Scholar 

  • Guri, P.K., Champati Ray, P.K. and Patel, R.C. (2015) Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Environ. Monit. Assess., v.187(6), pp.1–25. doi:https://doi.org/10.1007/s10661-015-4535-1

    Article  Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M. and Reichenbach, P. (1999) Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, v.31, pp.181–216. doi:https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M. and Ardizzone, F. (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology, v.72, pp.272–299. doi:https://doi.org/10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Hong, H., Pradhan, B., Sameen, M. I., Kalantar, B., Zhu, A., and Chen, W. (2018) Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach. Landslides, v.15(4), pp.753–772.

    Article  Google Scholar 

  • Kumar, R. and Anbalagan, R. (2015) Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. Jour. Earth Syst. Sci., v.124, pp.431–448. doi:https://doi.org/10.1007/s12040-015-0536-2

    Article  Google Scholar 

  • Kumar, S. and Gupta, V. (2021) Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India. Nat. Hazards. pp.1–28 doi:https://doi.org/10.1007/s11069-021-04928-x

  • Kundu, V., and Patel, R.C. (2019) Susceptibility status of landslides in Yamuna valley, Uttarakhand, NW-Himalaya, India. Him. Geol, v.40(1), pp.30–49.

    Google Scholar 

  • Lee, S. and Choi, J. (2004) Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int. Jour. Geogr. Inf. Sci., v.18, pp.789–814. doi:https://doi.org/10.1080/13658810410001702003

    Article  Google Scholar 

  • Mathew, J., Jha, V.K. and Rawat, G.S. (2009) Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, v.6, pp.17–26. doi:https://doi.org/10.1007/s10346-008-0138-z

    Article  Google Scholar 

  • Mondal, S. and Maiti, R. (2013) Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya. Int. Jour. Disaster Risk Sci., v.4, pp.200–212. doi:https://doi.org/10.1007/s13753-013-0021-y

    Article  Google Scholar 

  • Naghibi, S.A. and Pourghasemi, H.R. (2015) A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour. Manag., v.29, pp.5217–5236. doi:https://doi.org/10.1007/s11269-015-1114-8

    Article  Google Scholar 

  • Nandi, A. and Shakoor, A. (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engg. Geol., v.110, pp.11–20. doi:https://doi.org/10.1016/j.enggeo.2009.10.001

    Article  Google Scholar 

  • Neuhäuser, B. and Terhorst, B. (2007) Landslide susceptibility assessment using ‘weights-of-evidence’ applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology, v.86, pp.12–24. doi:https://doi.org/10.1016/j.geomorph.2006.08.002

    Article  Google Scholar 

  • Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B.T., Lee, S. and Melesse, A.M. (2019) Landslide susceptibility mapping using different GIS-Based bivariate models. Water (Switzerland), v.11, pp.1–22. doi:https://doi.org/10.3390/w11071402

    Google Scholar 

  • Oh, H.J. and Pradhan, B. (2011) Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. v.37, pp.1264–1276. doi:https://doi.org/10.1016/j.cageo.2010.10.012

    Article  Google Scholar 

  • Pradhan, B., Oh, H.J. and Buchroithner, M. (2010) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics, Nat. Hazards Risk, v.1, pp.199–223. doi:https://doi.org/10.1080/19475705.2010.498151

    Article  Google Scholar 

  • Pradhan, B., and Buchroithner, M. F. (2010). Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ. Engg. Geosci., v.16(2), pp.107–126.

    Article  Google Scholar 

  • Ram, P. and Gupta, V. (2022) Landslide hazard, vulnerability, and risk assessment (HVRA), Mussoorie township, Lesser Himalaya, India. Environ. Dev. Sustain. doi:https://doi.org/10.1007/s10668-021-01449-2

  • Ram, P., Gupta, V., Devi, M. and Vishwakarma, N. (2020) Landslide susceptibility mapping using bivariate statistical method for the hilly township of Mussoorie and its surrounding areas, Uttarakhand Himalaya. Jour. Earth Syst. Sci., v.129(1), pp.1–18. doi:https://doi.org/10.1007/s12040-020-01428-7

    Google Scholar 

  • Ramakrishnan, D., Singh, T.N., Verma, A.K., Gulati, A. and Tiwari, K.C. (2013) Soft computing and GIS for landslide susceptibility assessment in Tawaghat area, Kumaun Himalaya, India. Nat. Hazards, v.65, pp.315–330. doi:https://doi.org/10.1007/s11069-012-0365-4

    Article  Google Scholar 

  • Remondo, J., González, A., De Terán, J.R.D., Cendrero, A., Fabbri, A., and Chung, C.J.F. (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat. Hazards, v.30(3), pp.437–449.

    Article  Google Scholar 

  • Sahana, M. and Sajjad, H. (2017) Evaluating effectiveness of frequency ratio, fuzzy logic and logistic regression models in assessing landslide susceptibility: a case from Rudraprayag district, India. Jour. Mt. Sci., v.14, pp.2150–2167. doi:https://doi.org/10.1007/s11629-017-4404-1

    Article  Google Scholar 

  • Shanker, R. (1971) Stratigraphy and sedimentation of Tal Formation, Mussoorie Syncline, Uttar Pradesh. Jour. Palaeontol. Soc. India, v.16, pp.1–15.

    Google Scholar 

  • Sarkar, S., Roy, A.K. and Martha, T.R. (2013) Landslide susceptibility assessment using Information Value Method in parts of the Darjeeling Himalayas. Jour. Geol. Soc. India, v.82, pp.351–362. doi:https://doi.org/10.1007/s12594-013-0162-z

    Article  Google Scholar 

  • Sharma, S. and Mahajan, A.K. (2019) A comparative assessment of information value, frequency ratio and analytical hierarchy process models for landslide susceptibility mapping of a Himalayan watershed, India. Bull. Eng. Geol. Environ., v.78, pp.2431–2448. doi:https://doi.org/10.1007/s10064-018-1259-9

    Article  Google Scholar 

  • Süzen, M.L. and Doyuran, V. (2004) A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environ. Geol. v.45, pp.665–679. doi:https://doi.org/10.1007/s00254-003-0917-8

    Article  Google Scholar 

  • Thiery, Y., Malet, J.P., Sterlacchini, S., Puissant, A. and Maquaire, O. (2007) Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology, v.92, pp.38–59. doi:https://doi.org/10.1016/j.geomorph.2007.02.020

    Article  Google Scholar 

  • van Westen, C.J., Castellanos, E. and Kuriakose, S.L. (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engg. Geol. v.102, pp.112–131. doi:https://doi.org/10.1016/j.enggeo.2008.03.010

    Article  Google Scholar 

  • van Westen, C.J., Rengers, N. and Soeters, R. (2003) Use of Geomorphological expert knowledge in indirect landslide hazard assessment. Nat. Hazards, v.30 pp.399–419.

    Article  Google Scholar 

  • Wang, Q., Guo, Y., Li, W., He, J., and Wu, Z. (2019) Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics, Nat. Hazards and Risk, v.10(1), pp.820–835.

    Article  Google Scholar 

  • Yalcin, A. (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, v.72, pp.1–12. doi:https://doi.org/10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Yalcin, A., Reis, S., Aydinoglu, A. C., and Yomralioglu, T. (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, v.85(3), pp.274–287.

    Article  Google Scholar 

  • Yilmaz, C., Topal, T. and Süzen, M.L. (2012) GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ. Earth Sci., v.65, pp.2161–2178. doi:https://doi.org/10.1007/s12665-011-1196-4

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank the Director, Wadia Institute of Himalayan Geology, Dehradun for his constant encouragement to carry out the present study and permission to publish the paper. Rainfall data provided by the Mussoorie Forest Division, Forest Department, Uttarakhand is greatly acknowledged. This publication bears WIHG contribution No. WIHG/0225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Ram, P., Tandon, R.S. et al. Efficacy of Landslide Susceptibility Maps Prepared Using Different Bivariate Methods: Case Study from Mussoorie Township, Garhwal Himalaya. J Geol Soc India 99, 370–376 (2023). https://doi.org/10.1007/s12594-023-2319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-023-2319-8

Navigation