Skip to main content

Advertisement

Log in

Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Garhwal Himalaya in northern India has emerged as one of the most prominent hot spots of landslide occurrences in the Himalaya mainly due to geological causes related to mountain building processes, steep topography and frequent occurrences of extreme precipitation events. As this region has many pilgrimage and tourist centres, it is visited by hundreds of thousands of people every year, and in the recent past, there has been rapid development to provide adequate roads and building infrastructure. Additionally, attempts are also made to harness hydropower by constructing tunnels, dams and reservoirs and thus altering vulnerable slopes at many places. As a result, the overall risk due to landslide hazards has increased many folds and, therefore, an attempt was made to assess landslide susceptibility using ‘Weights of Evidence (WofE)’, a well-known bivariate statistical modelling technique implemented in a much improved way using remote sensing and Geographic Information System. This methodology has dual advantage as it demonstrates how to derive critical parameters related to geology, geomorphology, slope, land use and most importantly temporal landslide distribution in one of the data scarce region of the world. Secondly, it allows to experiment with various combination of parameters to assess their cumulative effect on landslides. In total, 15 parameters related to geology, geomorphology, terrain, hydrology and anthropogenic factors and 2 different landslide inventories (prior to 2007 and 2008–2011) were prepared from high-resolution Indian remote sensing satellite data (Cartosat-1 and Resourcesat-1) and were validated by field investigation. Several combinations of parameters were carried out using WofE modelling, and finally using best combination of eight parameters, 76.5 % of overall landslides were predicted in 24 % of the total area susceptible to landslide occurrences. The study has highlighted that using such methodology landslide susceptibility assessment can be carried out in vast stretches of Himalaya in short time in order to assess the impact of development as well as climate change/variability. The resultant map can play a critical role in selecting areas for remedial measures for slope stabilisation as well planning for future development of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q., & Wright, D. F. (1993). Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In J. C. David & U. C. Herzfeld (Eds.), Computers in geology, 25 years of progress (pp. 13–32). Oxford: Oxford University Press.

    Google Scholar 

  • Akgun, A., & Turk, N. (2010). Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multi-criteria decision analysis. Environmental Earth Science, 61(3), 595–611.

    Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014a). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA, 114, 21–36.

    Google Scholar 

  • Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2014b). Landslide susceptibility mapping using decision-tree based Chi-squared automatic interaction detection (CHAID) and logistic regression (LR) integration, 7th IGRSM International Remote Sensing & GIS Conference and Exhibition, IOP Conf. Series. Earth and Environmental Science, 20(2014), 012032.

    Google Scholar 

  • Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32, 269–277.

    Google Scholar 

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS based logistic regression for landslide susceptibility mapping in Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15–31.

    Google Scholar 

  • Bai, S., Lu, G., Wang, J., Zhou, P., & Ding, L. (2010). GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environtal Earth Science, 62(1), 139–149.

    Google Scholar 

  • Bhandari, R. K. (2003). Two great landslide tragedies of India. In H. Gupta (Ed.), Disaster management (pp. 110–126). Hyderabad: University Press (India) Pvt. Ltd.

    Google Scholar 

  • Bonham-Carter, G.F. (1994). Geographic information systems for geoscientists-modeling with GIS. Computer Methods in the Geoscientists, 13

  • Bonham-Carter, G. F. (2002). Geographic information systems for geoscientist: modelling with GIS. In D. F. Merriam (Ed.), Computer methods in the geosciences (pp. 302–334). New York: Pergamon/Elsevier.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., & Wright, D. F. (1988). Integration of geological datasets for gold exploration in Nova Scotia. Photogrammetric Engineering and Remote Sensing, 54, 1585–1592.

    Google Scholar 

  • Bonham-Carter, G. F., Agterberg, F. P., Wright, D. F. (1989). Weights of evidence modelling: a new approach to mapping mineral potential. In: F. P. Agterberg, G. F Bonham-Carter (Eds.), Statistical applications in the earth science. Geological Survey of Canada Paper, vol. 89–9 (pp. 171–183).

  • Bookhagen, B., Burbank, D.W. (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research, 115.

  • Brabb, E.E. (1984) Innovative approach to landslide hazard and risk mapping. Proceedings of the 4th International Symposium on Landslides. Toronto 1,307–324.

  • Bui, D. T., Ho, T. C., Revhaug, I., Pradhan, B., & Nguyen, D. (2013). Landslide susceptibility mapping along the National Road 32 of Vietnam using GIS-based J48 decision tree classifier and its ensembles. In M. Buchroithner, N. Prechtel, & D. Burghardt (Eds.), Cartography from pole to pole (pp. 303–317). Berlin: Springer.

    Google Scholar 

  • Bui, D.T., Pradhan, B., Lofman, O., & Revhaug, I. (2012a) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree and Naïve Bayes models. Mathematical Problems in Engineering, 1–26.

  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2011). Landslide susceptibility mapping at Hoa Binh Province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers and Geosciences, 45, 199–211.

    Google Scholar 

  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012b). Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology, 171–172, 12–29.

    Google Scholar 

  • Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012c). Spatial prediction of landslide hazards in Hoa Binh Province (Vietnam): a comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. Catena, 96, 28–40.

    Google Scholar 

  • Cardinali, M., Carrara, A., Guzzetti, F., & Reichenbach, P. (2002). Landslide hazard map for the Upper Tiber River basin. CNR, Gruppo Nazionale per la Difesadalle CatastrofiIdro geologiche, Publication no. 2116.

  • Carranza, E. J. M., & Hale, M. (2002). Spatial association of mineral occurrences and curvilinear geological features. Mathematical Geology, 34(2), 203–221.

    CAS  Google Scholar 

  • Carrara, A., Cardinali, M., Guzzetti, M., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems in assessing natural hazards (pp. 135–175). Dordrecht: Kluwer.

    Google Scholar 

  • Célérier, J., Harrison, T. M., Beyssac, O., Herman, F., Dunlap, W. J., & Webb, A. A. G. (2009). The Kumaun and Garwhal Lesser Himalaya, India: part 2. Thermal and deformation histories. Geological Society of America Bulletin, 121(9–10), 1281–1297.

    Google Scholar 

  • CEOS. (2001) The use of earth observing satellites for hazard support: assessment and scenarios. CEOS report, NOAA, USA. http://ceos.esa.int/plenary16/papers/plenary16_doc14_dmsg_final/final_report/DMSG_final.html, last accessed 19 July 2014.

  • Champati ray, P. K. (1996). Landslide hazard zonation using fuzzy logic and probability analysis in western Himalayas. Netherlands: Project report under IIRS-ITC programme, internal publication. ITC.

    Google Scholar 

  • Champati ray, P. K. (2004). GIS based landslide modeling. In R. Nagarajan (Ed.), Landslide disaster: assessment and monitoring (pp. 81–96). New Delhi: Anmol Publications.

    Google Scholar 

  • Champati ray, P. K. (2013). A tale of two lakes from Uttarakhand. Indian Landslides, 6(2), 1–8.

    Google Scholar 

  • Champati ray, P. K., Bhan, S. K. (1998). Remotely sensed and ancillary data integration techniques for landslide hazard zonation in remote sensing in geoscience. In N. K.Tripathy and V. N. Bajpai (Eds.), ( pp 245–260). New Delhi: Anmol Publisher.

  • Champati ray, P. K., Chattoraj, S. L., & Kannaujiya, S. (2013). Uttarakhand Disaster 2013: response and mitigation measures using remote sensing and GIS. IGC, Roorkee, 11–12, 37–45.

    Google Scholar 

  • Champati ray, P. K., Dimri, S., Lakhera, R. C., & Sati, S. (2007). Landslide monitoring and fuzzy integration based method for hazard assessment in active seismic zone of Himalaya. International Journal on “Landslides”, Springer-Verlag GmbH, 4(3), 101–110.

    Google Scholar 

  • Chauhan, S., Sharma, M., & Arora, M. (2010a). Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model. Landslides, 7, 411–423.

    Google Scholar 

  • Chauhan, S., Sharma, M., Arora, M. K., & Gupta, N. K. (2010b). Landslide susceptibility zonation through ratings derived from artificial neural network. International Journal of Applied Earth Observation and Geoinformation, 12(5), 340–350.

    Google Scholar 

  • Chau, K. T., & Chan, J. E. (2005). Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island. Landslides, 2, 280–290.

    Google Scholar 

  • Chen, W., Li, W.P. (2014). Application of weights-of-evidence model in landslide susceptibility mapping at Baozhong Region in Baoji, China. Environmental Geology, 19 Bund. E, 1073–1088.

  • Chung, C. J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65, 1389–1399.

    Google Scholar 

  • Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250.

    Google Scholar 

  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1), 79–87.

    Google Scholar 

  • Crozier, M. (2010). Landslide geomorphology: an argument for recognition, with examples from New Zealand. Geomorphology, 120(1), 3–15.

    Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., & Paudyal, P. (2008a). Predictive modeling of rainfall-induced landslide hazard in the lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, 102(3), 496–510.

    Google Scholar 

  • Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., & Nishino, K. (2008b). GIS-based weights-of-evidence modeling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311–324.

    CAS  Google Scholar 

  • Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228.

    Google Scholar 

  • Dai, F., Lee, C., Li, J., & Xu, Z. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3), 381–391.

    Google Scholar 

  • Daneshfar, B., & Benn, K. (2002). Spatial relationships between natural seismicity and faults, southeastern Ontario and north-central New York state. Tectonophysics, 353(1), 31–44.

    Google Scholar 

  • Das, I., Sahoo, S., van Westen, C., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627–637.

    Google Scholar 

  • Dimri, S., Lakhera, R. C., & Sati, S. (2007). Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides, 4(2), 101–111.

    Google Scholar 

  • Emmanuel, J., Carranza, M., & Hale, M. (2000). Geologically constrained probabilistic mapping of gold potential, Baguio district, Philippines. Natural Resource Research, 9, 237–253.

    Google Scholar 

  • Ercanoglu, M., & Gokceoglu, C. (2002). Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41(6), 720–730.

    Google Scholar 

  • ESRI Arc-GIS, http://webhelp.esri.com/arcgisdesktop/9.3/pdf/arcmap_tutorial.pdf. Accessed 19 July 2014.

  • Forbes, K., & Broadhead, J. (2011). Forests and landslides: the role of trees and forests in the prevention of landslides and rehabilitation of landslide-affected areas in Asia. Bangkok: Food and Agriculture Organization (FAO) of the United Nations, Regional Office for Asia and the Pacific.

    Google Scholar 

  • Gökceoglu, C., & Aksoy, H. (1996). Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44(1), 147–161.

    Google Scholar 

  • Goodacre, A., Bonham-Carter, G., Agterberg, F., & Wright, D. (1993). A statistical analysis of the spatial association of seismicity with drainage patterns and magnetic anomalies in western Quebec. Tectonophysics, 217(3), 285–305.

    Google Scholar 

  • Greenway, D. (1987) Vegetation and slope stability. Slope stability: geotechnical engineering and geomorphology/edited by MG Anderson and KS Richards.

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181–216.

    Google Scholar 

  • Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., & Ardizzone, F. (2005). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1), 272–299.

    Google Scholar 

  • Hervása, J., Barredoa, J., Rosinb, P. L., Pasutoc, A., Mantovanid, F., & Silvanoc, S. (2003). Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology, 54, 63–75.

    Google Scholar 

  • Hong, Y., Adler, R., & Huffman, G. (2007). Use of satellite remote sensing data in the mapping of global landslide susceptibility. Natural Hazards, 43(2), 245–256.

    Google Scholar 

  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Gupta, R. P., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5, 407–416.

    Google Scholar 

  • Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3), 347–366.

    Google Scholar 

  • Kayastha, P., De Smedt, F., Dhital, & M.R. (2010). GIS based landslide susceptibility assessment in Nepal Himalaya: a comparison of heuristic and statistical bivariate methods. In: J. P Malet, T. Glade, N. Casagli (Eds.) Mountain risks: bringing science to society, CERG Editions (pp. 121–128).

  • Kumar, K., Devrani, R., & Mathur, S. (2010). Landslide hazard potential analysis using GIS, Patalganga Valley, Garhwal, Western Himalayan Region of India. European Journal of Scientific Research, 45(3), 346–366.

    Google Scholar 

  • Lee, S. (2004). Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environmental Management, 34(2), 223–232.

    Google Scholar 

  • Lee, S., & Choi, J. (2004). Landslide susceptibility mapping using GIS and the weights-of evidence model. International Journal of Geogrgaphical Information Science, 18, 789–814.

    Google Scholar 

  • Lee, S., Choi, J., Chwae, U., & Chang, B. (2002a). Landslide susceptibility assessment using weight of evidence. Geoscience and remote sensing symposium, IEEE, 5, 2865–2867.

    Google Scholar 

  • Lee, S., Choi, J., & Min, K. (2002b). Landslide susceptibility analysis and verification using the Bayesian probability model. Environmental Geology, 43(1–2), 120–131.

    Google Scholar 

  • Lee, S., Hwang, J., & Park, I. (2012). Application of data-driven evidential belief functions to landslide susceptibility mapping in Jinbu, Korea. Catena, 100, 15–30.

    Google Scholar 

  • Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40(9), 1095–1113.

    Google Scholar 

  • Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4, 33–41.

    Google Scholar 

  • Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855.

    Google Scholar 

  • Lusted, L.B. (1968) Introduction to medical decision making. Charles C. Thomas, Springfield III. 271.

  • Mathew, J., Jha, V. K., & Rawat, G. (2007). Weights of evidence modeling for landslide hazard zonation mapping in part of Bhagirathi valley, Uttarakhand. Current Science, 92(5), 628.

    Google Scholar 

  • Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of Garhwal Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6, 17–26.

    Google Scholar 

  • Mejia-Navarro, M., Wohl, E. E., & Oaks, S. D. (1994). Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology, 10, 331–354.

    Google Scholar 

  • Meten, M., Bhandary, N.P., & Yatabe, R. (2014). The Application of weights of evidence modeling for landslide susceptibility mapping of Dejen-GohaTsiyon transect in the Blue Nile Gorge, Central Ethiopia. International Symposium Geohazards: Science, Engineering and Management, Paper No. LF-04

  • Metternicht, G., Hurni, L., & Gogu, R. (2005). Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sensing of Environment, 98, 284–303.

    Google Scholar 

  • MOEF. (2014). Assessment of environmental degradation and impact of hydroelectric projects during the June 2013 disaster in Uttarakhand. New Delhi: Govt. Of India. http://www.indiaenvironmentportal.org.in/files/file/environmental%20degradation%20&%20hydroelectric%20projects.pdf. Accessed 1 July 2014.

    Google Scholar 

  • Moore, I. D., Grayson, R., & Ladson, A. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.

    Google Scholar 

  • Naithani, A. (1999). The Himalayan landslides. Employment News, 23(47), 20–26.

    Google Scholar 

  • Nefeslioglu, H.A., Sezer, E., Gokceoglu, C., Bozkir, A.S., & Duman, T.Y. (2010). Assessment of landslide susceptibility by decision trees in the metropolitan area of Istanbul, Turkey. Mathematical Problems in Engineering, Article ID 901095.

  • Neuhäuser, B., & Terhorst, B. (2007). Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology, 86(1), 12–24.

    Google Scholar 

  • Nichol, J., & Wong, M. S. (2005). Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing, 26(9), 1913–1926.

    Google Scholar 

  • NIDM (2013) http://nidm.gov.in/PDF/Newsletter/36_apr_2013.pdf.Accessed 8 Jan 2014.

  • O’leary, D., Friedman, J., & Pohn, H. (1976). Lineament, linear, lineation: some proposed new standards for old terms. Geological Society of America Bulletin, 87(10), 1463–1469.

    Google Scholar 

  • Pachauri, A., Gupta, P., & Chander, R. (1998). Landslide zoning in a part of the Garhwal Himalayas. Environmental Geology, 36(3–4), 325–334.

    Google Scholar 

  • Pachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32, 81–100.

    Google Scholar 

  • Park, I., Lee, S. (2014) Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea. International Journal of Remote Sensing, 35(16).

  • Patwary, M., & Parvaiz, I. (2009). IRS-LISS-III and PAN data analysis for landslide susceptibility mapping using heuristic approach in active tectonic region of Himalaya. Journal of the Indian Society of Remote Sensing, 37(3), 493–509.

    Google Scholar 

  • Petley, D. N., Rosser, N. J., Karim, D., Wali, S., Ali, N., Nasab, N., & Shaban, K. (2010). Non-seismic landslide hazards along the Himalayan Arc. In A. L. Williams, G. M. Pinches, C. Y. Chin, T. J. McMorran, & C. I. Massey (Eds.), Geologically active (pp. 143–154). London: CRC Press.

    Google Scholar 

  • Piacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., & Strada, C. (2012). Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology, 151, 196–206.

    Google Scholar 

  • Pradhan, B. (2010). Application of an advanced fuzzy logic model for landslide susceptibility analysis. International Journal of Computational Intelligence Systems, 3(3), 370–381.

    Google Scholar 

  • Pradhan, B., & Buchroithner, M. F. (2010). Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environmental and Engineering Geoscience, 16(2), 107–126. doi:10.2113/gseegeosci.16.2.107.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2010a). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Science, 60(5), 1037–1054.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2010b). Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software, 25(6), 747–759.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2010c). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.

    Google Scholar 

  • Pradhan, B., & Pirasteh, S. (2010). Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Advances, 3(2), 26–34.

    Google Scholar 

  • Rana, N., Singh, S., Sundriyal, Y.P., & Juyal, N. (2013) Recent and past floods in the Alaknanda valley: causes and consequences. Current Science, 105(9).

  • Routela, P. (2013). Lessons learnt from the Deluge of Kedarnath, Uttarakhand, India. Asian Journal of Environment and Disaster Management, 5(2), 43–51.

    Google Scholar 

  • Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1), 172–187.

    Google Scholar 

  • Saha, A. K., Gupta, R. P., Sarkar, I., Arora, M. K., & Csaplovics, E. (2005). An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides, 2(1), 61–69.

    Google Scholar 

  • Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology, 109, 108–121.

    Google Scholar 

  • Sati, S., Sundriyal, Y., Rana, N., & Dangwal, S. (2011). Recent landslides in Uttarakhand: nature’s fury or human folly. Current Science (Bangalore), 100(11), 1617–1620.

    Google Scholar 

  • Sharma, M., & Kumar, R. (2008). GIS-based landslide hazard zonation: a case study from the Parwanoo area, Lesser and Outer Himalaya, HP, India. Bulletin of Engineering Geology and the Environment, 67(1), 129–137.

    Google Scholar 

  • Singhroy, V. (2008). Satellite remote sensing applications for landslide detection and monitoring (chapter 7). In S. Kioji & C. Paolo (Eds.), Book landslide disaster risk reduction (pp. 143–158). Berlin: Springer.

    Google Scholar 

  • Soeters, R., & van Westen, C. J. (1996). Slope instability recognition, analysis and zonation. Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report, 247, 129–177.

    Google Scholar 

  • Song, R. H., Hiromu, D., Kazutoki, A., Usio, K., & Sumio, M. (2008). Modelling the potential distribution of shallow-seated landslides using the weights of evidence method and a logistic regression model: a case study of the Sabae area, Japan. International Journal of Sediment Research, 23(2), 106–118.

    Google Scholar 

  • Speigelhalter, D. J., & Knill-Jones, R. P. (1984). Statistical and knowledge-based approaches to clinical decision-support systems, with an application in gastroenterology. Journal of the Royal Statistical Society, Series A, 147, 35–77.

    Google Scholar 

  • Styczen, M. E., & Morgan, R. P. C. (1995). Engineering properties of vegetation. In R. P. C. Morgan & R. J. Rickson (Eds.), Slope stabilization and erosion control: a bioengineering approach (pp. 5–58). London: Chapman & Hall.

    Google Scholar 

  • Sujatha, E. R., Kumaravel, P., & Rajamanickam, G. V. (2014). Assessing landslide susceptibility using Bayesian probability-based weight of evidence model. Bulletin of Engineering Geology and the Environment, 73(1), 147–161.

    Google Scholar 

  • Thiery, Y., Malet, J. P., Sterlacchini, S., Puissant, A., & Maquaire, O. (2007). Landslide susceptibility assessment by bivariate methods at large scales: application to a complex mountainous environment. Geomorphology, 92, 38–59.

    Google Scholar 

  • Upreti, B. N., & Dhital, M. R. (1996). Landslide studies and management in Nepal. Kathmandu: International Centre for Integrated Mountain Development (ICIMOD).

    Google Scholar 

  • Valdiya, K. S. (1980). Geology of Kumaun Lesser Himalaya. Dehradun: Wadia Institute of Himalayan Geology.

    Google Scholar 

  • Valdiya, K. S. (2010). The making of India: geodynamic evolution (1st ed., p. 848). New Delhi: Macmillan Publishers India Ltd.

    Google Scholar 

  • Valdiya, K.S. (2013) Recent tectonic movements in the Kaveri catchment, Southern India. Journal of the Indian Institute of Science, 77(3).

  • Valdiya, K. S., Paul, S., Chandra, T., Bhakuni, S., & Upadhyay, R. (1999). Tectonic and lithological characterization of Himadri (Great Himalaya) between Kali and Yamuna rivers, central Himalaya. Himalayan Geology, 20(2), 1–17.

    Google Scholar 

  • van Westen, C. J. (2000). The modelling of landslide hazards using GIS. Surveys in Geophysics, 21(2–3), 241–255.

    Google Scholar 

  • van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Engineering Geology, 102(3), 112–131.

    Google Scholar 

  • van Westen, C. J., Rengers, N., & Soeters, R. (2003). Use of geomorphological information in indirect landslide susceptibility assessment. Natural Hazards, 30(3), 399–419.

    Google Scholar 

  • van Western, C. J., & Terlien, T. J. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21, 53–868.

    Google Scholar 

  • Varnes, D. J. (1984) Landslide hazard zonation: a review of principles and practice. Commission on landslides of the IAEG, UNESCO. Natural hazards, 3, 61.

  • Virdi, N.S. (1986) Lithostratigraphy and structure of the central crystallines in the Alaknanda and Dhauliganga valleys of Garhwal, U.P. In: P. S. Saklani (Ed), Himalayan thrust and associated rocks. Current Trends in Geology, 10, 155–166.

  • Yeon, Y. K., Han, J. G., & Ryu, K. H. (2010). Landslide susceptibility mapping in Injae, Korea, using a decision tree. Engineering Geology, 116, 274–283.

    Google Scholar 

  • Yilmaz, I. (2009a). A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment, 68(3), 297–306.

    Google Scholar 

  • Yilmaz, I. (2009b). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Computers and Geosciences, 35(6), 1125–1138.

    Google Scholar 

  • Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Science Reviews, 76(1), 1–131.

    Google Scholar 

  • Yin, K., Yan, T. (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Proceedings of the 5th international symposium on landslides, Lausanne, (pp. 1269–1272).

  • Zare, M., Pourghasemi, H., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6, 2873–2888.

    Google Scholar 

Download references

Acknowledgments

The author gives special thanks to Prof. John D. Vitek and Dr. Netra R. Regmi, Department of Geology and Geophysics, Texas A&M University, Texas, for their technical support. Research grant provided under Disaster Management Support Programme (DMSP) of Indian Space Research Organisation (ISRO) at IIRS, Dehradun, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pardeep Kumar Guri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guri, P.K., Champati ray, P.K. & Patel, R.C. Spatial prediction of landslide susceptibility in parts of Garhwal Himalaya, India, using the weight of evidence modelling. Environ Monit Assess 187, 324 (2015). https://doi.org/10.1007/s10661-015-4535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4535-1

Keywords

Navigation