Skip to main content
Log in

Origin and emplacement of the Higher Himalayan Leucogranite in the eastern Himalaya: Constraints from geochemistry and mineral chemistry

  • Research Article
  • Published:
Journal of the Geological Society of India

Abstract

The Higher Himalayan Leucogranites (HHLG) intruded into the high grade rocks of the Higher Himalayan Crystallines (HHC) in western Arunachal Pradesh, eastern Himalaya, yield distinctive field data, petrography, geochemical and mineral chemistry data. The HHLG mostly occur as sill like bodies of limited thickness and lateral extent within the HHC. The Arunachal HHLG are characterized by the presence of two micas; normative corundum; high contents of SiO2 (67–78 wt.%), Al2O3 (13–18 wt.%), A/CNK (0.98–1.44) and Rb (154–412 ppm); low contents of CaO (0.33–1.91 wt.%) and Sr (19–171 ppm), and a high ratio of FeO(tot)/MgO in biotite (2.54–4.82). These distinctive features, along with their strong depletion in high field strength elements (HFSE), suggest their affinity to peraluminous S-type granite generated by the partial melting of crustal material. Since the HHLG associated with high grade rocks of HHC and lack of basaltic magmatism, strongly suggests that the high grade rocks of HHC might represent the melt source and HHLG are product of pure crustal melt without any contamination of mantle material. Geothermobarometric estimations and mineral assemblages of the HHC metapelites confirm that the HHLG were probably generated in the middle crust (∼20 km) and the produced melts intruded the HHC in the form of sills/dykes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman, A.M. (1994) Nature of biotites from alkaline, calcalkaline and peraluminous magmas. Jour. Petrol., v.35, pp.525–541.

    Article  Google Scholar 

  • Beaumont, C., Jamieson, R.A., Nguyen, M.H. and Lee, B. (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focus surface denudation. Nature, v.414, pp.738–742.

    Article  Google Scholar 

  • Beaumont, C., Jamieson, R.A., Nguyen, M.H. and Medvedev, S. (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Jour. Geophys. Res., v.109(B06406), doi:10.1029/2003JB002809.

    Google Scholar 

  • Bhalla, J.K., Bishui, P.K. and Mathur, A.K. (1994) Geochronology and geochemistry of some granitoids of Kameng and Subansiri districts, Arunachal Pradesh. Indian Minerals, v.48, pp.61–76.

    Google Scholar 

  • Bhushan, S. K., Bindal, C.M. and Aggarwal, R.K. (1991) Geology of Bomdila group in Arunachal Pradesh. Him. Geol. v.2, pp.207–214.

    Google Scholar 

  • Bikramaditya Singh, R.K. (2010) Deformation and Metamorphism of Bomdila and Se La Groups of Crystalline Rocks and Geochemistry of the Associated Granitoids in Parts of Kameng District of Arunachal Pradesh, Eastern Himalaya. Unpublished D.Phil. Thesis, H.N.B. Garhwal University, India.

    Google Scholar 

  • Bikramaditya Singh, R.K. and Gururajan, N.S. (2011) Microstructures in quartz and feldspars of the Bomdila Gneiss from western Arunachal Himalaya, Northeast India: Implications for the geotectonic evolution of the Bomdila mylonitic zone. Jour. Asian Earth Sci., v.42, pp.1163–1178.

    Article  Google Scholar 

  • Castelli, D. and Lombardo, B. (1988) The Gophu La and Western Lunana granites: Miocene muscovite leucogranites of the Bhutan Himalaya. Lithos, v.21, pp.211–225.

    Article  Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geol., v.8, pp.173–174.

    Google Scholar 

  • Chappell, B.W. and White, A.J.R. (1992) I- and S-type granites in the Lachlan Fold Belt. Trans. Roy. Soc. Edinb.: Earth Sci., v.83, pp.1–26.

    Article  Google Scholar 

  • Clemens, J.D. and Wall, V.J. (1981) Origin and crystallization of some peraluminous (S-type) granitic magmas. Can. Mineral., v.19, pp.111–131.

    Google Scholar 

  • Daniel, C.G., Hollister, L., Parrish, R.R. and Grujic, D. (2003) Exhumation of the Main Central thrust from lower crustal depths, Eastern Bhutan Himalaya. Jour. Meta. Geol., v.21, pp.317–334.

    Article  Google Scholar 

  • Daniel, C. Vidal, Ph. Fernandez, A., Le Fort, P. and Peucat, J.J. (1987) Isotopic study of the Manaslu granite (Himalaya, Nepal): inferences on the age and source of Himalayan Leucogranites. Contrib. Mineral. Petrol., v.96, pp.78–92.

    Article  Google Scholar 

  • Das, A.K., Bakliwal, P.C. and Dhoundial, D.P. (1975) A brief outline of geology of parts of Kameng district, NEFA. Geol. Surv. India, Misc. Publ., v.24, pp.115–127.

    Google Scholar 

  • Davidson, C., Grujic, D., Hollister, L.S. and Schmid, S.M. (1997) Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan Crystallines, Bhutan. Jour. Meta. Geol., v.15, pp.593–612.

    Article  Google Scholar 

  • De La Roche, H., Leterrier, P., Grandclaude, P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1-R2 diagrams and major element analyses-Its relationship with current nomenclature. Chem. Geol., v.29, pp.183–210.

    Article  Google Scholar 

  • Deer, W.A., Howie, R.A. and Zussman, J. (1963) Rock forming minerals, Sheet Silicates. Longman Green and Co., 270p.

    Google Scholar 

  • Dietrich, V. and Gansser, A. (1981) The leucogranites of the Bhutan Himalaya (Crustal anatexis versus mantle melting). Schweizerische Mineralogische und Petrographische Mitteilungen, v.61, pp.177–202.

    Google Scholar 

  • Ebadi, A. and Johannes, w. (1991) Experimental investigation of composition and beginning of melting in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O-CO2. Contrib. Mineral. Petrol., v.106, pp.286–295.

    Article  Google Scholar 

  • England, P.C. and Molnar, P. (1990) Surface uplift, uplift of rocks and exhumation of rocks. Geology, v.18, pp.1173–1177.

    Article  Google Scholar 

  • England, P. C., Le Fort, P., Molnar, P. and Peacher, A. (1992) Heat sources for Tertiary metamorphism and anatexis in the Annapurna-Manaslu region, Central Nepal. Jour. Geophys. Res., v.97, pp.2107–2128.

    Article  Google Scholar 

  • France-lanord, C. and Le Fort, P. (1988) Crustal melting and granite genesis during the Himalayan collision orogenesis. Trans. Roy. Soc. Edinb.: Earth Sci., v.79, pp.183–195.

    Article  Google Scholar 

  • Frank, W., Thoni, M. and Purtscheller, F. (1977) Geology and petrography of Kulu-south Lahul area. Colloq. Internat. CNRS Himalaya, v.268, pp.147–160.

    Google Scholar 

  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J. and Frost, C.D. (2001) A geochemical classification for granitic rocks. Jour. Petrol., v.42, pp.2033–2048.

    Article  Google Scholar 

  • Gansser, A. (1964) The Geology of the Himalayas. Wiley interscience, 289p.

    Google Scholar 

  • Gilkson, A.L. (1974) Classification and nomenclature of igneous rocks. Recommendations of the IUGS sub-commission on the systematic of igneous rocks. Geologische Rundschau, v.63, pp.773–786.

    Article  Google Scholar 

  • Goswami, S., Bhowmik, S.K. and Dasgupta, S. (2009) Petrology of a non-classical Barrovian inverted metamorphic sequence from the western Arunachal Himalaya, India. Jour. Asian Earth Sci., v.36, pp.390–406.

    Article  Google Scholar 

  • Grujic, D., Casey, M., Davidson, C., Hollister, L. S., Kundig, R., Pavlis, T. and Schmid, S. (1996) Ductile extrusion of the Higher Himalayan Crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics, v.260, pp.21–43.

    Article  Google Scholar 

  • Grujic, D., Hollister, L.S. and Parrish, R.R. (2002) Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet Sci. Lett., v.198, pp.177–191.

    Article  Google Scholar 

  • Guillot, S. and Le Fort, P. (1995) Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, v.35, pp.221–234.

    Article  Google Scholar 

  • Harris, N. and Inger, S. (1992) Trace element modelling of pelite derived granites. Contrib. Mineral. Petrol., v.110, pp.45–56.

    Article  Google Scholar 

  • Harris, N., Ayres, M. and Massey, J. (1995) The incongruent melting of Muscovite: implications for the geochemistry and extraction of granite magmas. Jour. Geophys. Res., v.100, pp.15777–15787.

    Google Scholar 

  • Harris, N., Inger, S. and Massey, J. (1993) The role of fluids in the formation of High Himalayan leucogranites. In: M. P. Searle and P. J. Treloar (Eds.), Himalayan Tectonics, pp.391–400.

    Google Scholar 

  • Harrison, T.M., Grove, M., Lovera, O.M., Catlos, E.J. and D’Andrea, J. (1999) The origin of Himalayan anatexis and inverted metamorphism: Models and constraints. Jour. Asian Earth Sci., v.17, pp.755–772.

    Article  Google Scholar 

  • Hodges, K.V. and Silverberg, D.S. (1988) Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonics, v.7, pp.583–600.

    Article  Google Scholar 

  • Holtz, F., Barbey, P., Johannes, W. and Pichavant, M. (1989) Composition and temperature at the minimum point in the Qz-Ab-Or system for H2O undersaturated conditions. Experimental investigation, Terra Cognita v.1, pp.271–272.

    Google Scholar 

  • Inger, S. and Harris, N. (1993) Geochemical constraints on leucogranite magmatism in the Langthan Valley, Nepal Himalaya. Jour. Petrol., v.34, pp.345–368.

    Article  Google Scholar 

  • Islam, R., Ahmad, T. and Khanna, P.P. (2005) An overview on the granitoids of the NW Himalaya. Him. Geol., v.26, pp.49–60.

    Google Scholar 

  • Jamieson, R.A., Beaumont, C., Medvedev, S. and Nguyen, M.H. (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. Jour. Geophys. Res., 109(B06407), doi:10.1029/2003JB002811.

    Google Scholar 

  • Jamieson, R.A., Beaumont, C., Nguyen, M.H. and Lee, B. (2002) Interaction of metamorphism, deformation and exhumation in large convergent orogens. Jour. Met. Geol., v.20, pp.9–24.

    Article  Google Scholar 

  • Khanna, P.P., Saini, N.K., Mukherjee, P.K. and Purohit, K.K. (2009) An appraisal of ICP-MS technique for determination of REEs: long term QC assessment of Silicate rock analysis. Him. Geol., v.30, pp.95–99.

    Google Scholar 

  • Kretz, R. (1983) Symbols of rock forming minerals. Am. Mineral., v.68, pp.277–279.

    Google Scholar 

  • Kumar, G. (1997) Geology of Arunachal Pradesh. Geol. Soc. India, 217p.

    Google Scholar 

  • Kumar, S. and Pathak, M. (2009) Magnetic susceptibility and geachemistry of felsic igneous rocks from western Arunachal Himalaya: Implication on granite series evaluation in Orogenic Belt. In: S. Kumar (Ed.), Magmatism, Tectonism and Mineralization, Macmillan Publ. India Ltd. New Delhi, India, pp.74–91.

    Google Scholar 

  • Le Breton, N. and Thompson, A.B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib. Mineral. Petrol., v.99, pp.226–237.

    Article  Google Scholar 

  • Le Fort, P. (1975) Himalayas, the collided range: Present knowledge of the continental arc. Amer. Jour. Sci., v.275, pp.1–44.

    Article  Google Scholar 

  • Le Fort, P. (1981) Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. Jour. Geophys. Res., v.86, pp.10545–10568.

    Article  Google Scholar 

  • Le Fort, P., Cuney, M., Deniel, C., Lanords, C.F., Sheppard, N.F., Upreti, B.N. and Vidal, P. (1987) Crustal generation of the Himalayan leucogranite. Tectonophysics, v.134, pp.39–57.

    Article  Google Scholar 

  • Maniar, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geol. Soc. Amer. Bull., v.101, pp.635–643.

    Article  Google Scholar 

  • Molnar, P., Chen, W.P. and Padovani, E. (1983) Calculated temperatures in overthrust terrains and possible combinations of heat sources responsible for the tertiary granites in the greater Himalaya. Jour. Geophys. Res., v.88, pp.6415–6429.

    Article  Google Scholar 

  • Nelson, K.D., Zhao, W., Brown, L.D., Kuo, J., Che, J., Liu, X, Klemperer, S.L., Makovsky, Y., Meissner, R., Mechie, J., Kind, R., Wenzel, F., Ni, J., Nabelek, J., Chen, L., Tan, H., Wei, W., Jones, A.G., Booker, J.R., Unsworth, M.J., Kidd, W.S.F., Hauck, M., Alsdorf, D., Ross, A., Cogan, M., Wu, C., Sandvol, E. and Edwards, M. (1996) Partially molten middle crust beneath Southern Tibet: Synthesis of Project INDEPTH results. Science, v.274, pp.1684–1696.

    Article  Google Scholar 

  • O’Connor, J. J. (1965) A classification for the quart-rich igneous rocks based of feldspar ratios. U. S. Geol. Surv. Publ., 525 p.

    Google Scholar 

  • Patiño Douce, A.E. and Harris, N. (1998) Experimental constraints on Himalayan anatexis. Jour. Petrol., v.39, pp.689–710.

    Article  Google Scholar 

  • Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jour. Petrol., v.25, pp.115–125.

    Article  Google Scholar 

  • Pitcher, W.S. (1982) Granite Type and Tectonic Environment. In: K. Hsu (Ed.), Mountain Building Processes. Academic Press, London, pp.19–40.

    Google Scholar 

  • Reddy, S.M., Searle, M.P. and Massey, J.A. (1993) Structural evolution of the High Himalayan gneiss sequence, Langtang valley, Nepal. In: P.J. Treloar and M.P. Searle (Eds.), Himalayan Tectonics, Geol. Soc. London Spec. Publ. no.74, pp.375–389.

    Google Scholar 

  • Rogers, J.J.W. and Greenberg, J.K. (1990) Late orogenic, Post orogenic and anorogenic granites: distinction by major element and trace element chemistry and possible origins. Jour. Geol., v.98, pp.291–309.

    Article  Google Scholar 

  • Sachan, H.K., Kohn, M.J., Saxena, A. and Corrie, S.L. (2010) The Malari Leucogranite, Garhwal Himalaya, Northern India: Chemistry, Age, and Tectonic Implications. Geol. Soc. Am. Bull., v.122, pp.1865–1876.

    Article  Google Scholar 

  • Scaillet, B., France Lanord, C. and Le Fort, P. (1990) Badrinath-Gangotri Plutons (Garhwal, India) petrological and geochemical evidence for fractionation processes in a High Himalayan Leucogranite. Jour. Vol. Geotherm. Res., v.44, pp.163–188.

    Article  Google Scholar 

  • Searle, M.P. 1999. Emplacement of Himalayan leucogranites by magma injection along giant sill complexes: examples from the Cho Oyu, Gyachung Kang and Everest leucogranites (Nepal Himalaya). Jour. Asian Earth Sci., v.17, pp.773–783.

    Article  Google Scholar 

  • Searle, M.P. and Fryer, B.J. (1986) Garnet, tourmaline and muscovite-bearing leucogranites, gneisses and migmatites of the Higher Himalayas from Zanskar, Kulu, Lahoul and Kashmir. In: M.P. Coward and A. Ries (Eds.), Collision Tectonics. Geol. Soc. London Spec. Publ. no.19, pp.185–201.

    Google Scholar 

  • Searle, M.P. and Szulc, A.G. (2005) Channel flow and ductile extrusion of the high Himalayan slab-the Kangchenjunga-Darjeeling profile, Sikkim Himalaya. Jour. Asian Earth Sci., v.25, pp.173–185.

    Article  Google Scholar 

  • Searle, M.P., Cottle, J.M., Streule, M.J. and Waters, D.J. (2010) Crustal melt granites and migmatites along the Himalaya: melt source, segregation, transport and granite emplacement mechanisms. Trans. Roy. Soc. Edinb.: Earth Sci., v.100, pp.219–233.

    Article  Google Scholar 

  • Searle, M.P., Metcalfe, R.P., Rex, A.J. and Norry, M.J. (1993) Field relations, petrogenesis and emplacement of the Bhagirathi leucogranite, Garhwal Himalaya. In: P.J. Treloar and M.P. Searle, Himalayan Tectonics. Geol. Soc. London Spec. Publ. no.74, pp.429–44.

    Google Scholar 

  • Searle, M.P., Parrish, R.R., Hodges, K.V., Hurford, A.J., Ayres, M.W. and Whitehouse, M.J. (1997) Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. Jour. Geol., v.105, pp.295–317.

    Article  Google Scholar 

  • Singh, S. and Jain, A.K. (2003) Himalayan Granitoids. In: S. Singh (Ed.), Granitoids of the Himalayan Collisional Belt. Jour. Virtual Explorer, Electronic Edition 11.

    Google Scholar 

  • Srinivasan, V. (2001) Stratigraphy and structure of low-grade metasedimentaries in eastern Bhutan and western Arunachal Pradesh. Him. Geol., v.22(2), pp.83–98.

    Google Scholar 

  • Stuckless, J.S. (1989) Petrogenesis of two contrasting late Archean granitoids,Wind River Range, Wyoming. USGS Prof. Paper, v.1491, pp.1–38.

    Google Scholar 

  • Sun, S.S. and Mcdonough, W.F. (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders and M.J. Norry (Eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ. no.42, pp.13–345.

    Google Scholar 

  • Thimm, K.A., Parrish, R.R., Hollister, L.S., Grujic, D., Klepeis, K. and Dorji, T. (1999) New U-Pb data from the MCT and Lesser and Greater Himalayan Sequence in Bhutan. Terrra Nosira, v.2, pp.155.

    Google Scholar 

  • Thompson, A.B. (1982) Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids. Amer. Jour. Sci., v.282, pp.1567–1595.

    Article  Google Scholar 

  • Todd, V.R. and Shaw, S.E. (1985) S-type granitoids and an I-S line in the Penisular Ranges Batholith, Southern California. Geology, v.13, pp.231–233.

    Article  Google Scholar 

  • Tuttle, O.F. and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem., v.74, pp.153.

    Google Scholar 

  • Valdiya, K.S. (1980) Geology of the Kumaon Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehra Dun, India, 291p.

    Google Scholar 

  • Verma, P.K. and Tandon, S.K. (1976) Geological observations in a part of the Kameng district, Arunachal Pradesh (NEFA). Himalayan Geol., v.6, pp.259–286.

    Google Scholar 

  • Vidal, Ph., Cocherie, A. and Le Fort, P. (1982) Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya Nepal). Geochim. Cosmochim. Acta, v.46, pp.2279–2292.

    Article  Google Scholar 

  • Vielzeuf, D. and Holloway, J.R. (1988) Experimental determination of the fluid absent melting relations in the pelitic system, Consequences for crustal differentiation. Contrib. Mineral. Petrol., v.98, pp.257–276.

    Article  Google Scholar 

  • Wadia, D.N. (1957) Geology of the India. McMillan and Co., 536p.

    Google Scholar 

  • Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., v.64, pp.295–304.

    Article  Google Scholar 

  • Winkler, H.G.F. (1979) Petrogenesis of Metamorphic Rocks. Springer, 348p.

    Book  Google Scholar 

  • Yin, A., Dubey, C.S., Kelty, T.K., Gehrels, G.E., Chou, C.Y., Grove, M. and Lovera, O. (2006) Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen. Current Sci., v,90, pp.95–206.

    Google Scholar 

  • Yin, A., Dubey, C.S., Kelty, T.K., Webb, A.A.G., Harrison, T.M., Chou, C.Y. and Celerier, J. (2010) Geologic correlation of the Himalayan orogen and Indian craton: Part 2: Structural geology, geochronology, and tectonic evolution of the Eastern Himalaya. Geol. Soc. Amer. Bull., v.122, pp.360–395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Bikramaditya Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikramaditya Singh, R.K. Origin and emplacement of the Higher Himalayan Leucogranite in the eastern Himalaya: Constraints from geochemistry and mineral chemistry. J Geol Soc India 81, 791–803 (2013). https://doi.org/10.1007/s12594-013-0104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-013-0104-9

Keywords

Navigation