Skip to main content
Log in

Existence of Weak Solutions for Weighted Robin Problem Involving \(p\left( .\right)\)-biharmonic operator

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Using Mountain Pass Theorem, we consider the existence of weak solutions of weighted Robin problem involving \(p\left( .\right)\)-biharmonic operator

$$\begin{aligned} \left\{ \begin{array}{cc} a\left( x\right) \Delta _{p\left( x\right) }^{2}u=\lambda b(x)\left| u\right| ^{q(x)-2}u, &{} in~\Omega \\ a(x)\left| \Delta u\right| ^{p(x)-2}\frac{\partial u}{\partial \upsilon }+\beta (x)\left| u\right| ^{p(x)-2}u=0, &{} on~\partial \Omega \end{array} \right. \end{aligned}$$

under some conditions in the space \(W_{a,b}^{2,p(.)}\left( \Omega \right) .\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, S.G.: Positive solutions for Robin problem involving the \(p(x)\)-Laplacian. J. Math. Anal. Appl. 360(2), 548–560 (2009)

    Article  MathSciNet  Google Scholar 

  2. Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p\left( x\right)\)-Laplacian Dirichlet problem. Nonlinear Anal. 52(8), 1843–1852 (2003)

    Article  MathSciNet  Google Scholar 

  3. Halsey, T.C.: Electrorheological fluids. Science 258(5083), 761–766 (1992)

    Article  Google Scholar 

  4. Mihăilescu, M., Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A 462(2073), 2625–2641 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Růžička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Science & Business Media, Berlin (2000)

    Book  Google Scholar 

  6. Unal, C., Aydin, I.: Compact embeddings of weighted \(p(.)\)-variable exponent Sobolev spaces and existence of solutions for weighted Laplacian. Complex Var. Elliptic Equ. 66(10), 1755–1773 (2021)

    Article  MathSciNet  Google Scholar 

  7. Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR Izv. 29(1), 33–66 (1987)

    Article  Google Scholar 

  8. Kováčik, O., Rákosník, J.: On spaces \({L}^{p(x)}\) and \({W}^{k, p(x)}\). Czechoslov. Math. J. 41(116)(4), 592–618 (1991)

    Article  Google Scholar 

  9. Aydin, I., Unal, C.: Weighted stochastic field exponent Sobolev spaces and nonlinear degenerated elliptic problem with nonstandard growth. Hacettepe J. Math. Stat. 49(4), 1383–1396 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Aydin, I., Unal, C.: Three solutions to a Steklov problem involving the weighted \(p\left( .\right)\)-Laplacian. Rocky Mt. J. Math. 51(1), 67–76 (2021)

    Article  MathSciNet  Google Scholar 

  11. Deng, S.G.: Eigenvalues of the \(p(x)\)-Laplacian Steklov problem. J. Math. Anal. Appl. 339(2), 925–937 (2008)

    Article  MathSciNet  Google Scholar 

  12. Hsini, M., Irzi, N., Kefi, K.: Nonhomogeneous \(p\left( x\right)\)-Laplacian Steklov problem with weights. Complex Var. Elliptic Equ. 65(3), 440–454 (2020)

    Article  MathSciNet  Google Scholar 

  13. Aydin, I.: Weighted variable Sobolev spaces and capacity. J. Funct. Spaces Appl. 2012 (2012)

  14. Fan, X.: Solutions for \(p(x)\)-Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl. 312(2), 464–477 (2005)

    Article  MathSciNet  Google Scholar 

  15. Kim, Y.H., Wang, L., Zhang, C.: Global bifurcation for a class of degenerate elliptic equations with variable exponents. J. Math. Anal. Appl. 371(2), 624–637 (2010)

    Article  MathSciNet  Google Scholar 

  16. Liu, Q.: Compact trace in weighted variable exponent Sobolev spaces \({W}^{1, p(x)}(\omega; \nu _{0},\nu _{1})\). J. Math. Anal. Appl. 348(2), 760–774 (2008)

    Article  MathSciNet  Google Scholar 

  17. Liu, Q., Liu, D.: Existence and multiplicity of solutions to a \(p(x)\)-Laplacian equation with nonlinear boundary condition on unbounded domain. Differ. Equ. Appl 5(4), 595–611 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Aydin, I., Unal, C.: The Kolmogorov-Riesz theorem and some compactness criterions of bounded subsets in weighted variable exponent amalgam and Sobolev spaces. Collect. Math. 71(3), 349–367 (2020)

    Article  MathSciNet  Google Scholar 

  19. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer-Verlag, Berlin (2011)

    Book  Google Scholar 

  20. Fan, X., Zhao, D.: On the spaces \({L}^{p\left( x\right) }\left( \omega \right)\) and \({W}^{k, p\left( x\right) }\left( \omega \right)\). J. Math. Anal. Appl. 263(2), 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  21. Unal, C., Aydin, I.: Compact embeddings on a subspace of weighted variable exponent Sobolev spaces. Adv. Oper. Theory 4(2), 388–405 (2019)

    Article  MathSciNet  Google Scholar 

  22. Fan, X.L., Wu, H.Q., Wang, F.Z.: Hartman-type results for \(p(t)\)-Laplacian systems. Nonlinear Anal. 52(2), 585–594 (2003)

    Article  MathSciNet  Google Scholar 

  23. Lahmi, B., Azroul, E., El Haiti, K.: Nonlinear degenerated elliptic problems with dual data and nonstandard growth. Math. Rep. 20(70)(1), 81–91 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Yongqiang, F.: Weak solution for obstacle problem with variable growth. Nonlinear Anal. 59(3), 371–383 (2004)

    Article  MathSciNet  Google Scholar 

  25. Izuki, M., Nogayama, T., Noi, T., Sawano, Y.: Wavelet characterization of local Muckenhoupt weighted Lebesgue spaces with variable exponent. Nonlinear Anal. 198, 111930 (2020)

    Article  MathSciNet  Google Scholar 

  26. Aydin, I., Unal, C.: Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted \(p(.)\)-Laplacian. Ric. Mat. (Accepted for Publication). https://doi.org/10.1007/s11587-021-00621-0

  27. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press (1970)

  28. Diening, L.: Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129(8), 657–700 (2005)

    Article  MathSciNet  Google Scholar 

  29. Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal. 69(10), 3629–3636 (2008)

    Article  MathSciNet  Google Scholar 

  30. Ayoujil, A., El Amrouss, A.R.: Multiple solutions for a Robin problem involving the \(p(x)\)-biharmonic operator. Ann. Univ. Craiova Math. Comput. Sci. Ser. 44(1), 87–93 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Ge, B., Zhou, Q.M.: Multiple solutions for a Robin-type differential inclusion problem involving the \(p(x)\)-Laplacian. Math. Methods Appl. Sci. 40(18), 6229–6238 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zhikov, V., Surnachev, M.: On density of smooth functions in weighted Sobolev spaces with variable exponents. St. Petersburg Math. J. 27(3), 415–436 (2016)

    Article  MathSciNet  Google Scholar 

  33. Edmunds, D.E., Rákosník, J.: Density of smooth functions in \({W}^{k, p(x)}(\omega )\). Proc. R. Soc. Lond. Ser. A 437(1899), 229–236 (1992)

    Article  Google Scholar 

  34. Samko, S.: Denseness of \({C}_{0}^{\infty }\left({\mathbb{R}}^{N}\right)\) in the generalized Sobolev spaces \({W}^{M,P(X)}\left({\mathbb{R}}^{N}\right)\), 333–342 (2000)

  35. Kokilashvili, V., Samko, S.: Singular integrals in weighted Lebesgue spaces with variable exponent. Georgian Math. J. 10(1), 145–156 (2003)

    Article  MathSciNet  Google Scholar 

  36. Willem, M.: Minimax Theorems. Inc, Boston (1996)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cihan Unal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulak, Ö., Aydin, I. & Unal, C. Existence of Weak Solutions for Weighted Robin Problem Involving \(p\left( .\right)\)-biharmonic operator. Differ Equ Dyn Syst (2022). https://doi.org/10.1007/s12591-022-00619-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-022-00619-6

Keywords

Mathematics Subject Classification

Navigation