Skip to main content
Log in

Some Remarks on a Class of p(x)-Laplacian Robin Eigenvalue Problems

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the p(x)-Laplacian Robin eigenvalue problem

$$\begin{aligned} \left\{ \begin{array}{ll} - \Delta _{p(x)}u = \lambda V(x) |u|^{q(x)-2}u, \quad x\in \Omega ,\\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu }+\beta (x)|u|^{p(x)-2}u=0,\quad x\in \partial \Omega , \end{array}\right. \end{aligned}$$

where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\) with smooth boundary \(\partial \Omega \), \(N\ge 2\), \(\frac{\partial u}{\partial \nu }\) is the outer normal derivative of u with respect to \(\partial \Omega \), \(p,q\in C_+(\overline{\Omega })\), \(1<p^-:= \inf _{x\in \overline{\Omega }}p(x) \le p^+:=\sup _{x\in \overline{\Omega }}p(x)<N\), \(\beta \in L^\infty (\partial \Omega )\), \(\beta ^-:=\inf _{x\in \partial \Omega }\beta (x)>0\), and \(\lambda >0\) is a parameter. Under some suitable conditions on the functions q and V, we establish the existence of a continuous family of eigenvalues in a neighborhood of the origin using variational methods. The main results of this paper improve and generalize the previous ones introduced in Deng (J Math Anal Appl 360:548–560, 2009), Kefi (Zeitschrift für Analysis und ihre Anwendungen (ZAA) 37:25–38, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdullayev, F., Bocea, M.: The Robin eigenvalue problem for the \(p(x)\)-Laplacian as \(p\rightarrow \infty \). Nonlinear Anal. (TMA) 91, 32–45 (2013)

    Article  MathSciNet  Google Scholar 

  2. Ali, K.B., Ghanmi, A., Kefi, K.: On the Steklov problem involving the \(p(x)\)-Laplacian with indefinite weight. Opuscula Math. 37(6), 779–794 (2017)

    Article  MathSciNet  Google Scholar 

  3. Allaoui, M.: Existence of solutions for a Robin problem involving the \(p(x)\)-Laplacian. Appl. Math. E-Notes 14, 107–115 (2014)

    MathSciNet  Google Scholar 

  4. Allaoui, M., Ourraoui, A.: Existence results for a class of \(p(x)\)-Kirhhoff problem with a singular weight. Mediterr. J. Math. 13(2), 677–686 (2016)

    Article  MathSciNet  Google Scholar 

  5. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barletta, G., Chinni, A., O’Regan, D.: Existence results for a Neumann problem involving the \(p(x)\)-Laplacian with discontinuous nonlinearities. Nonlinear Anal. (RWA) 27, 312–325 (2016)

    Article  MathSciNet  Google Scholar 

  7. Bouslimi, M., Kefi, K.: Existence of solution for an indefinite weight quasilinear problem with variable exponent. Complex Var. Elliptic Equ. 58, 1655–1666 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, N.T.: Multiple solutions for a class of \(p(x)\)-Laplacian problems involving concave-convex nonlinearities. Electron. J. Qual. Theory Differ. Eq. 2013(26), 1–17 (2013)

    MathSciNet  Google Scholar 

  9. Deng, S.G.: Positive solutions for Robin problem involving the \(p(x)\)-Laplacian. J. Math. Anal. Appl. 360, 548–560 (2009)

    Article  MathSciNet  Google Scholar 

  10. Deng, S.G.: Eigenvalues of the \(p(x)\)-Laplacian Steklov problem. J. Math. Anal. Appl. 339, 925–937 (2009)

    Article  MathSciNet  Google Scholar 

  11. Deng, S.G., Wang, Q., Cheng, S.: On the \(p(x)\)-Laplacian Robin eigenvalue problem. Appl. Math. Comput. 217(12), 5643–5649 (2011)

    MathSciNet  Google Scholar 

  12. Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents, Lecture Notes, vol. 2017. Springer-Verlag, Berlin (2011)

    Book  MATH  Google Scholar 

  13. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, X.L.: Eigenvalues of the \(p(x)\)-Laplacian Neumann problems. Nonlinear Anal. (TMA) 67, 2982–2992 (2007)

    Article  MathSciNet  Google Scholar 

  15. Fan, X.L., Zhang, Q.H., Zhao, D.: Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306–317 (2005)

    Article  MathSciNet  Google Scholar 

  16. Ge, B., Zhou, Q.M.: Multiple solutions for a Robin-type differential inclusion problem involving the \(p(x)\)-Laplacian. Math. Meth. Appl. Sci. 40(18), 6229–6238 (2017)

    Article  MathSciNet  Google Scholar 

  17. Kefi, K.: Nonhomogeneous boundary value problems in Sobolev spaces with variable exponent. Int. J. Appl. Math. Sci. 3(2), 103–115 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Kefi, K.: \(p(x)\)-Laplacian with indefinite weight. Proc. Am. Math. Soc. 139(12), 4351–4360 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kefi, K.: On the Robin problem with indefinite weight in Sobolev spaces with variable exponents. Zeitschrift für Analysis und ihre Anwendugen (ZAA) 37, 25–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kefi, K., Radulescu, V.D.: On a \(p(x)\)-biharmonic problem with singular weights. Z. Angew. Math. Phys. 68(4), 13 (2017) (Art. 80)

  21. Kong, L.: Weak solutions for nonlinear Neumann boundary value problems with \(p(x)\)-Laplacian operators. Taiwanese J. Math. 21(6), 1355–1379 (2017)

    Article  MathSciNet  Google Scholar 

  22. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{1, p(x)}\). Czechoslovak Math. J. 41, 592–618 (1991)

    MathSciNet  Google Scholar 

  23. Mihailescu, M., Radulescu, V.: On a nonhomogenuous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Am. Math. Soc. 135, 2929–2937 (2007)

    Article  MATH  Google Scholar 

  24. Ourraoui, A.: Multiplicity results for Steklov problem with variable exponent. Appl. Math. Comput. 277, 34–43 (2016)

    MathSciNet  Google Scholar 

  25. Qian, C., Shen, Z., Yang, M.: Existence of solutions for \(p(x)\)-Laplacian nonhomogeneous Neumann problems with indefinite weight. Nonlinear Anal. (RWA) 11(1), 446–458 (2010)

    Article  MathSciNet  Google Scholar 

  26. Ruzicka, M.: Electrorheological fluids: modeling and mathematical theory. Springer-Verlag, Berlin (2002)

    MATH  Google Scholar 

  27. Tsouli, N., Darhouche, O.: Existence and multiplicity results for nonlinear problems involving the \(p(x)\)-Laplace operator. Opuscula Math. 34(3), 621–638 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Thanh Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, N.T. Some Remarks on a Class of p(x)-Laplacian Robin Eigenvalue Problems. Mediterr. J. Math. 15, 147 (2018). https://doi.org/10.1007/s00009-018-1196-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1196-7

Mathematics Subject Classification

Keywords

Navigation