Skip to main content
Log in

A protocol for fractal studies on porosity of porous media: High quality soil porosity images

  • Articles
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

A protocol for obtaining digital images from natural porous media with a wide range of pore sizes, intended for fractal studies of the porosity, is proposed. Soil porosity is used as paradigm of complex natural porous media in this study. The use of several imaging devices and fluorescent compounds to enhance the contrast between the solid and the pore phase is tested. Finally a protocol is reached using a photo camera and a confocal microscope. It is the first time that confocal microscopy is used for this purpose. Artificial porous images are created through random Sierpinski carpet fractals and the statistical information of real soil images. These ground truth images are used in an objective comparison of automatic segmentation algorithms for the obtained images. A statistical classification on the performance of several automatic segmentation algorithms for this type of images is reached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Bartoli, F., Dutartre, P., Gomendy, V., et al., 1998. Fractals and Soil Structure. In: Fractals in Soil Science. CRC Press LLC, Cleveland. 203–232

    Google Scholar 

  • Bartoli, F., Philippy, R., Doirisse, M., et al., 1991. Structure and Self-Similarity in Silty and Sandy Soils: The Fractal Approach. Journal of Soil Science, 42(2): 167–185. doi:10.1111/j.1365-2389.1991.tb00399.x

    Article  Google Scholar 

  • Bergman, E., 1985. Nutrient Solution Culture of Plants. The Pennsylvania State University College of Agriculture, Extension Service Hort. Mimeo Series II. Pennsylvania

    Google Scholar 

  • Bullock, P., Fedoroff, N., Jongerius, A., et al., 1985. Handbook of Soil Thin Section Description. Waine Reserch, Wolverhampton. 152

    Google Scholar 

  • Caniego, F. J., Martín, M. A., San José, F., 2001. Singularity Features of Pore-Size Soil Distribution: Singularity Strength Analysis and Entropy Spectrum. Fractals, 9(3): 305–316. doi:10.1142/s0218348x0100066x

    Article  Google Scholar 

  • Caniego, F., Martín, M., San José Martínez, F., 2003. Rényi Dimensions of Soil Pore Size Distribution. Geoderma, 112(3/4): 205–216. doi:10.1016/s0016-7061(02)00307-5

    Article  Google Scholar 

  • Chun, H. C., Giménez, D., Yoon, S. W., 2008. Morphology, Lacunarity and Entropy of Intra-Aggregate Pores: Aggregate Size and Soil Management Effects. Geoderma, 146(1/2): 83–93. doi:10.1016/j.geoderma.2008.05.018

    Article  Google Scholar 

  • Duda, R., Hart, P., Stork, D., 2001. Pattern Classification. John Wiley & Sons, New York

    Google Scholar 

  • Edwards, W. M., Norton, L. D., Redmond, C. E., 1988. Characterizing Macropores that Affect Infiltration into Nontilled Soil. Soil Science Society of America Journal, 52(2): 483. doi:10.2136/sssaj1988.03615995005200020033x

    Article  Google Scholar 

  • FitzPatrick, E. A., 1984. Micromorphology of Soils. Chapman & Hall, New York

    Book  Google Scholar 

  • Frykman, P., Rogon, T. A., 1993. Anisotropy in Pore Networks Analyzed with 2-D Autocorrelation (Variomaps). Computers & Geosciences, 19(7): 887–930. doi:10.1016/0098-3004(93)90002-m

    Article  Google Scholar 

  • García-Gutiérrez, C., 2004. Adquisición y Tratamiento de Imágenesdigitales de Suelo Para el anáLisis Multifractal de la Porosidad: [Dissertation]. Escuela Técnica Superior de Ingenieros Agrónomos. Universidad Politécnica de Madrid, Madrid (in Spanish)

    Google Scholar 

  • García-Gutiérrez, C., 2010. Caracterización y Modelización de la Estructura y la Textura de Lossuelos Usando Técnicas de Análisis de Imagen y Geometría Fractal. Aplicación al Estudio de la Diffusion en Medios Porosos: [Dissertation]. Universidad Politécnica de Madrid, Madrid (in Spanish)

    Google Scholar 

  • Geyger, E., Beckmann, W., 1967. Apparate und Methodem der mokromorphometrischen Struktur Analyse des Bodens. In: Die Mikromorphometrische Boden Analyse. Ferdinand Enke Verlag, Stuttgart. 36–57

    Google Scholar 

  • Glasbey, C. A., 1993. An Analysis of Histogram-Based Thresholding Algorithms. CVGIP: Graphical Models and Image Processing, 55(6): 532–537. doi:10.1006/cgip.1993.1040

    Google Scholar 

  • Glasbey, C. A., Horgan, G. W., 1995. Image Analysis for the Biological Sciences. John Wiley & Sons, New York

    Google Scholar 

  • Gomendy, V., Bartoli, F., Burtin, G., et al., 1999. Silty Topsoil Structure and Its Dynamics: The Fractal Approach. Geoderma, 88(3/4): 165–189. doi:10.1016/s0016-7061(98)00103-7

    Article  Google Scholar 

  • Hatano, R., Kawamura, N., Ikeda, J., et al., 1992. Evaluation of the Effect of Morphological Features of Flow Paths on Solute Transport by Using Fractal Dimensions of Methylene Blue Staining Pattern. Geoderma, 53(1/2): 31–44. doi:10.1016/0016-7061(92)90019-4

    Article  Google Scholar 

  • Iassonov, P., Gebrenegus, T., Tuller, M., 2009. Segmentation of X-Ray Computed Tomography Images of Porous Materials: A Crucial Step for Characterization and Quantitative Analysis of Pore Structures. Water Resources Research, 45(9): 706–715. doi:10.1029/2009wr008087

    Article  Google Scholar 

  • Katz, A. J., Thompson, A. H., 1985. Fractal Sandstone Pores: Implications for Conductivity and Pore Formation. Physical Review Letters, 54(12): 1325–1328. doi:10.1103/physrevlett.54.1325

    Article  Google Scholar 

  • Kim, J. W., Perfect, E., Choi, H., 2007. Anomalous Diffusion in Two-Dimensional Euclidean and Prefractal Geometrical Models of Heterogeneous Porous Media. Water Resources Research, 43(1): W1405. doi:10.1029/2006wr004951

    Google Scholar 

  • Leica, M., 2010. Technical Details on Leica’s Confocal Microscope. [2017-02-23]. http://www.leica-microsystems.com/products/confocalmicroscopes/

    Google Scholar 

  • Mandelbrot, B., 1982. The Fractal Geometry of Nature. W. H. Freeman and Company, New York

    Google Scholar 

  • Martín, M., Rey, J., Taguas, F., 2001. An Entropy-Based Parametrization of Soil Texture via Fractal Modelling of Particle-Size Distribution. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 457(2008): 937–947. doi:10.1098/rspa.2000.0699

    Article  Google Scholar 

  • Martín, M., Taguas, F., 1998. Fractal Modelling, Characterization and Simulation of Particle-Size Distributions in Soil. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1973): 1457–1468. doi:10.1098/rspa.1998.0216

    Article  Google Scholar 

  • Minski, M., 2010. Memoir on Inventing the Confocal Scanning Microscope. [2017-02-23]. http://web.media.mit.edu/minsky/

    Google Scholar 

  • Moran, C. J., McBratney, A. B., Koppi, A. J., 1989. A Rapid Method for Analysis of Soil Macropore Structure. I. Specimen Preparation and Digital Binary Image Production. Soil Science Society of America Journal, 53(3): 921–928. doi:10.2136/sssaj1989.03615995005300030048x

    Article  Google Scholar 

  • Muller, J., 1996. Characterization of Pore Space in Chalk by Multifractal Analysis. Journal of Hydrology, 187(1/2): 215–222. doi:10.1016/s0022-1694(96)03097-1

    Article  Google Scholar 

  • Murphy, C., 1986. Thin Section Preparation of Soils and Sediments. AB Academic Publishers, Berkhamsted

    Google Scholar 

  • Murphy, C. P., Bullock, P., Turner, R. H., 1977. The Measurement and Characterisation of Voids in Soil Thin Sections by Image Analysis. Part I. Principles and Techniques. Journal of Soil Science, 28(3): 498–508. doi:10.1111/j.1365-2389.1977.tb02258.x

    Article  Google Scholar 

  • Ogawa, S., Baveye, P., Boast, C. W., et al., 1999. Surface Fractal Characteristics of Preferential Flow Patterns in Field Soils: Evaluation and Effect of Image Processing. Geoderma, 88(3/4): 109–136. doi:10.1016/s0016-7061(98)00101-3

    Article  Google Scholar 

  • Pachepsky, Y., Crawford, J., Rawls, W., 2000. Fractals in Soil Science. Developments in Soil Science 27, 1st Ed. Elsevier, Amsterdam

    Google Scholar 

  • Pachepsky, Y., Yakovchenko, V., Rabenhorst, M. C., et al., 1996. Fractal Parameters of Pore Surfaces as Derived from Micromorphological Data: Effect of Long-Term Management Practices. Geoderma, 74(3/4): 305–319. doi:10.1016/s0016-7061(96)00073-0

    Article  Google Scholar 

  • Pagliai, M., Lamarca, M., Lucamante, G., 1983. Micromorphometric and Micromorphological Investigations of a Clay Loam Soil in Viticulture under Zero and Conventional Tillage. Journal of Soil Science, 34(2): 391–403. doi:10.1111/j.1365-2389.1983.tb01044.x

    Article  Google Scholar 

  • Persson, A. L., 1998. Image Analysis of Shape and Size of Fine Aggregates. Engineering Geology, 50(1/2): 177–186. doi:10.1016/s0013-7952(98)00009-x

    Article  Google Scholar 

  • Rozenbaum, O., Le Trong, E., Rouet, J. L., et al., 2007. 2-D Image Analysis: A Complementary Tool for Characterizing Quarry and Weathered Building Limestone. Journal of Cultural Heritage, 8(2): 151–159. doi:10.1016/j.culher.2007.01.004

    Article  Google Scholar 

  • San José Martínez, F., Caniego, F. J., García-Gutiérrez, C., et al., 2007. Representative Elementary Area for Multifractal Analysis of Soil Porosity Using Entropy Dimension. Nonlinear Processes in Geophysics, 14(4): 503–511. doi:10.5194/npg-14-503-2007

    Article  Google Scholar 

  • Sezgin, M., Sankur, B., 2004. Survey over Image Thresholding Techniques and Quantitative Performance Evaluation. Journal of Electronic Imaging, 13(1): 146–165. doi:10.1117/1.1631315

    Article  Google Scholar 

  • Sukop, M. C., Perfect, E., Bird, N. R. A., 2001. Water Retention of Prefractal Porous Media Generated with the Homogeneous and Heterogeneous Algorithms. Water Resources Research, 37(10): 2631–2636. doi:10.1029/2000wr000097

    Article  Google Scholar 

  • Unnikrishnan, R., Pantofaru, C., Hebert, M., 2005. A Measure for Objective Evaluation of Image Segmentation Algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR’ 05), Workshop on Empirical Evaluation Methods in Computer Vision, IEEE, San Diego

    Book  Google Scholar 

  • VandenBygaart, A. J., Protz, R., 1999. The Representative Elementary Area (REA) in Studies of Quantitative Soil Micromorphology. Geoderma, 89(3/4): 333–346. doi:10.1016/s0016-7061(98)00089-5

    Article  Google Scholar 

  • Vogel, H. J., Kretzschmar, A., 1996. Topological Characterization of Pore Space in Soil—Sample Preparation and Digital Image-Processing. Geoderma, 73(1/2): 23–38. doi:10.1016/0016-7061(96)00043-2

    Article  Google Scholar 

  • Wang, W., Kravchenko, A. N., Smucker, A. J. M., et al., 2011. Comparison of Image Segmentation Methods in Simulated 2D and 3D Microtomographic Images of Soil Aggregates. Geoderma, 162(3/4): 231–241. doi:10.1016/j.geoderma.2011.01.006

    Article  Google Scholar 

Download references

Aknowledgments

This work was partially supported by the Plan Nacional de Investigación Científica, Desarrollo e Investigación Tecnológica (I+D+i) (Nos. AGL2011/25175 and AGL2015/69697P), and by DGUI (Comunidad de Madrid) and UPM (No. QM100245066). The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0777-x.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García-Gutiérrez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gutiérrez, C., San José Martínez, F. & Caniego, J. A protocol for fractal studies on porosity of porous media: High quality soil porosity images. J. Earth Sci. 28, 888–896 (2017). https://doi.org/10.1007/s12583-017-0777-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0777-x

Key Words

Navigation