Skip to main content
Log in

Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu sag

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Fine-grained carbonate rocks, which extensively occur in the Eocene strata in the Shulu sag, Bohai Bay Basin, North China, represent an unconventional, fine-grained carbonate reservoir. However, previous studies have ignored the complexity of the lithofacies components and their formation mechanisms. Fine-grained carbonate rocks are typical reservoirs in which hydrocarbons form and gather. A better understanding of the nature of these rocks is extremely important for evaluating the quality of unconventional, fine-grained carbonate reservoirs. Various lithofacies components were discriminated in this study with a combination of petrographic observations and carbon isotope analyses. These finegrained carbonate rocks comprise terrigenous, biogenic and diagenetic materials. Terrigenous input and biologically induced precipitation are the main sources of the materials in the lake. Five lithofacies were identified based on the observations of sedimentary features (core and thin section) and mineralogical data: (1) varve-like laminated calcilutite, (2) graded laminated calcilutite, (3) interlaminated calcisiltitecalcilutite, (4) massive calcilutite, and (5) massive calcisiltite-calcarenite. Their origins were recorded by various lithofacies components, which are controlled by the interactions of physical, chemical and biological processes. This study indicated that the lithology of the bedrocks was the key factor controlling carbonate accumulation. The tectonics and climate can influence the weathering and types of lithofacies. Primary productivity controlled the precipitation of the endogenic calcite. These factors jointly determined the abundant fine-grained carbonate rocks that have accumulated in the Shulu sag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anadón, P., Utrilla, R., Vázquez, A., 2000. Use of Charophyte Carbonates as Proxy Indicators of Subtle Hydrological and Chemical Changes in Marl Lakes: Example from the Miocene Bicorb Basin, Eastern Spain. Sedimentary Geology, 133(3/4): 325–347. https://doi.org/10.1016/s0037-0738(00)00047-6

    Article  Google Scholar 

  • Anderson, R. Y., 1986. The Varve Microcosm: Propagator of Cyclic Bedding. Paleoceanography, 1(4): 373–382. https://doi.org/10.1029/pa001i004p00373

    Article  Google Scholar 

  • Anderson, R. Y., Dean, W. E., 1988. Lacustrine Varve Formation through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1–4): 215–235. https://doi.org/10.1016/0031-0182(88)90055-7

    Article  Google Scholar 

  • Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031–2059. https://doi.org/10.1306/03281110162

    Article  Google Scholar 

  • Beck, C., 2009. “Late Quaternary Lacustrine Paleo-Seismic Archives in North-Western Alps: Examples of Earthquake-Origin Assessment of Sedimentary Disturbances”. Earth-Science Reviews, 96(4): 327–344. https://doi.org/10.1016/j.earscirev.2009.07.005

    Article  Google Scholar 

  • Behrens, E. W., 1984. Unifite Muds in Intraslope Basins, Northwest Gulf of Mexico. Geo-Marine Letters, 4(3/4): 227–233. https://doi.org/10.1007/bf02281711

    Article  Google Scholar 

  • Bright, J., Kaufman, D. S., Forester, R. M., et al., 2006. A Continuous 250 000 yr Record of Oxygen and Carbon Isotopes in Ostracode and Bulk-Sediment Carbonate from Bear Lake, Utah-Idaho. Quaternary Science Reviews, 25(17/18): 2258–2270. https://doi.org/10.1016/j.quascirev.2005.12.011

    Article  Google Scholar 

  • Bustillo, M. A., Alonso-Zarza, A. M., 2007. Overlapping of Pedogenesis and Meteoric Diagenesis in Distal Alluvial and Shallow Lacustrine Deposits in the Madrid Miocene Basin, Spain. Sedimentary Geology, 198(3/4): 255–271. https://doi.org/10.1016/j.sedgeo.2006.12.006

    Article  Google Scholar 

  • Casado, A. I., Alonso-Zarza, A. M., la Iglesia, Á., 2014. Morphology and Origin of Dolomite in Paleosols and Lacustrine Sequences. Examples from the Miocene of the Madrid Basin. Sedimentary Geology, 312(10): 50–62. https://doi.org/10.1016/j.sedgeo.2014.07.005

    Article  Google Scholar 

  • Chafetz, H. S., 2013. Porosity in Bacterially Induced Carbonates: Focus on Micropores. AAPG Bulletin, 97(11): 2103–2111. https://doi.org/10.1306/04231312173

    Article  Google Scholar 

  • Chang, C. Y., 1991. Geological Characteristics and Distribution Patterns of Hydrocarbon Deposits in the Bohai Bay Basin, East China. Marine and Petroleum Geology, 8(1): 98–106. https://doi.org/10.1016/0264-8172(91)90048-6

    Article  Google Scholar 

  • Chang, T. S., Chun, S. S., 2012. Micro-Characteristics of Sustained, Fine-Grained Lacustrine Turbidites in the Cretaceous Hwangsan Tuff, SW Korea. Geosciences Journal, 16(4): 409–420. https://doi.org/10.1007/s12303-012-0042-3

    Article  Google Scholar 

  • Charles, M. J., Simmons, M. S., 1986. Methods for the Determination of Carbon in Soils and Sediments: A Review. The Analyst, 111(4): 385. https://doi.org/10.1039/an9861100385

    Article  Google Scholar 

  • Cita, M., 2008. Deep-Sea Homogenites: Sedimentary Expression of a Prehistoric Megatsunami in the Eastern Mediterranean. In: Shiki, T., Tsuji, Y., Minoura, K., eds., Tsunamiites—Features and Implications. Elsevier, Amsterdam. 185–202

  • Cobbold, P. R., Zanella, A., Rodrigues, N., et al., 2013. Bedding-Parallel Fibrous Veins (Beef and Cone-in-Cone): Worldwide Occurrence and Possible Significance in Terms of Fluid Overpressure, Hydrocarbon Generation and Mineralization. Marine and Petroleum Geology, 43(4): 1–20. https://doi.org/10.1016/j.marpetgeo.2013.01.010

    Article  Google Scholar 

  • Day-Stirrat, R. J., Dutton, S. P., Milliken, K. L., et al., 2010. Fabric Anisotropy Induced by Primary Depositional Variations in the Silt: Clay Ratio in Two Fine-Grained Slope Fan Complexes: Texas Gulf Coast and Northern North Sea. Sedimentary Geology, 226(1/2/3/4): 42–53. https://doi.org/10.1016/j.sedgeo.2010.02.007

    Article  Google Scholar 

  • Dean, W. E., 1981. Carbonate Minerals and Organic Matter in Sediments of Modern North Temperate Hard-Water Lakes. In: Ethridge, F. G., Flores, R. M., eds., Recent and Ancient Non-Marine Depositional Environments: Models for Exploration. SEPM Special Publication, 31: 213–231

    Google Scholar 

  • Dean, W., Rosenbaum, J., Skipp, G., et al., 2006. Unusual Holocene and Late Pleistocene Carbonate Sedimentation in Bear Lake, Utah and Idaho, USA. Sedimentary Geology, 185(1/2): 93–112. https://doi.org/10.1016/j.sedgeo.2005.11.016

    Article  Google Scholar 

  • Dittrich, M., Kurz, P., Wehrli, B., 2004. The Role of Autotrophic Picocyanobacteria in Calcite Precipitation in an Oligotrophic Lake. Geomicrobiology Journal, 21(1): 45–53. https://doi.org/10.1080/01490450490253455

    Article  Google Scholar 

  • Dittrich, M., Müller, B., Mavrocordatos, D., et al., 2003. Induced Calcite Precipitation by Cyanobacterium Synechococcus. Acta Hydrochimica et Hydrobiologica, 31(2): 162–169. https://doi.org/10.1002/aheh.200300486

    Article  Google Scholar 

  • Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, New York. 314–321

    Book  Google Scholar 

  • Fourmont, A., Macaire, J. J., Bréhéret, J. G., 2009. Contrasted Late Glacial and Holocene Hydrology of Sarliève Paleolake (France) from Sediment Geometry and Detrital Versus Biochemical Composition. Journal of Paleolimnology, 41(3): 471–490. https://doi.org/10.1007/s10933-008-9238-y

    Article  Google Scholar 

  • Francus, P., von Suchodoletz, H., Dietze, M., et al., 2013. Varved Sediments of Lake Yoa (Ounianga Kebir, Chad) Reveal Progressive Drying of the Sahara during the Last 6 100 Years. Sedimentology, 60(4): 911–934. https://doi.org/10.1111/j.1365-3091.2012.01370.x

    Article  Google Scholar 

  • Freytet, P., Verrecchia, E. P., 2002. Lacustrine and Palustrine Carbonate Petrography: An Overview. Journal of Paleolimnology, 27(2): 221–237

    Article  Google Scholar 

  • Garcés, B. L. V., Gierlowski-Kordesch, E. H., 1994. Lacustrine Carbonate Deposition in Middle Pennsylvanian Cyclothems? The Upper Freeport Formation, Appalachian Basin, USA. Journal of Paleolimnology, 11(1): 109–132. https://doi.org/10.1007/bf00683273

    Article  Google Scholar 

  • Gierlowski-Kordesch, E. H., 1998. Carbonate Deposition in an Ephemeral Siliciclastic Alluvial System: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hartford Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 140(1/2/3/4): 161–184. https://doi.org/10.1016/s0031-0182(98)00039-x

    Article  Google Scholar 

  • Gierlowski-Kordesch, E. H., 2010. Lacustrine Carbonates. Developments in Sedimentology, 61(1): 1–101

    Google Scholar 

  • Glenn, C., Kelts, K., 1991. Sedimentary Rhythms in Lake Deposits. In: Einsele, G., Ricken, W., Seilacher, A., eds., Cycles and Events in Stratigraphy. Springer, Berlin. 188–221

  • Griffiths, S. J., Street-Perrott, F. A., Holmes, J. A., et al., 2002. Chemical and Isotopic Composition of Modern Water Bodies in the Lake Kopais Basin, Central Greece: Analogues for the Interpretation of the Lacustrine Sedimentary Sequence. Sedimentary Geology, 148(1/2): 79–103. https://doi.org/10.1016/s0037-0738(01)00211-1

    Article  Google Scholar 

  • Han, C., Tian, J, Z., Zhao, R., et al., 2015. Reservoir Space Types and Its Genesis in Tight Calcilutite Rudstone Reservoir of the Lower Part of Member 3 of Shahejie Formation, Shulu Sag. Acta Petrolei Sinica, 36(B11): 31–39 (in Chinese with English Abstract)

    Google Scholar 

  • Hargrave, J. E., Hicks, M. K., Scholz, C. A., 2014. Lacustrine Carbonates from Lake Turkana, Kenya: A Depositional Model of Carbonates in an Extensional Basin. Journal of Sedimentary Research, 84(3): 224–237. https://doi.org/10.2110/jsr.2014.22

    Article  Google Scholar 

  • Hilfinger, M. F. IV, Mullins, H. T., Burnett, A., et al., 2001. A 2 500 year Sediment Record from Fayetteville Green Lake, New York: Evidence for Anthropogenic Impacts and Historic Isotope Shift. Journal of Paleolimnology, 26(3): 293–305. https://doi.org/10.1023/A:1017560300681

    Article  Google Scholar 

  • Hodell, D. A., Schelske, C. L., Fahnenstiel, G. L., et al., 1998. Biologically Induced Calcite and Its Isotopic Composition in Lake Ontario. Limnology and Oceanography, 43(2): 187–199. https://doi.org/10.4319/lo.1998.43.2.0187

    Article  Google Scholar 

  • Huang, C. Y., Zhang, J. C., Wang, H., et al., 2015. Lacustrine Shale Deposition and Variable Tectonic Accommodation in the Rift Basins of the Bohai Bay Basin in Eastern China. Journal of Earth Science, 26(5): 700–711. https://doi.org/10.1007/s12583-015-0602-3

    Article  Google Scholar 

  • Jarvie, D. M., 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale- Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 69–87. https://doi.org/10.1306/13321446M973489

    Google Scholar 

  • Jarvie, D. M., 2012b. Shale Resource Systems for Oil and Gas: Part 2—Shale- Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir, 97: 89–119

    Google Scholar 

  • Jiang, Z. X., Chen, D. Z., Qiu, L. W., et al., 2007. Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 54(2): 265–292. https://doi.org/10.1111/j.1365-3091.2006.00834.x

    Article  Google Scholar 

  • Jiang, Z. X., Li, Q., 2013. Reservoir Characteristics and Evaluation Methods of Tight Lacustrine Carbonates: Example from Shulu Sag in Bohai Bay, China. Unconventional Resources Technology Conference, Denver, USA

    Google Scholar 

  • Jiang, Z. X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031–1039 (in Chinese with English Abstract)

    Google Scholar 

  • Jiang, Z. X., Zhang, W., Liang, C., et al., 2014. Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinica, 35(1): 184–196 (in Chinese with English Abstract)

    Google Scholar 

  • Jin, Z., Zhou, Y., Zhang, X., 2002. Lacustrine Carbonate Sedimentary Facies of the Shahejie Formation of Paleogene in Huanghua Depression. Journal of Paleolimnology, 4(3): 11–18 (in Chinese with English Abstract)

    Google Scholar 

  • Jones, B. F., Bowser, C. J., 1978. The Mineralogy and Related Chemistry of Lake Sediments. In: Baccini, P., ed., Lakes: Chemistry, Geology, Physics. Springer, New York. 179–235

  • Kelts, K., Hsü, K., 1978. Freshwater Carbonate Sedimentation. In: Baccini, P., ed., Lakes: Chemistry, Geology, Physics. Springer, New York. 295–323

  • Kelts, K., Talbot, M., 1990. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions. In: Tilzer, M. M., Serruya, C., eds. Large Lakes: Ecological Structure and Function. Springer, Berlin. 288–315. https://doi.org/10.1007/978-3-642-84077-7_15

  • Kong, X. X., Jiang, Z. X., Han, C., et al., 2016. Laminations Characteristics and Reservoir Significance of Fine-Grained Carbonate in the Lower 3rd Member of Shahejie Formation of Shulu Sag. Petroleum Geology and Recovery Efficiency, 23(4): 19–26 (in Chinese with English Abstract)

    Google Scholar 

  • Lambert, A., Hsü, K. J., 1979a. Non-Annual Cycles of Varve-Like Sedimentation in Walensee, Switzerland. Sedimentology, 26(3): 453–461. https://doi.org/10.1111/j.1365-3091.1979.tb00920.x

    Article  Google Scholar 

  • Lambert, A., Hsü, K., 1979b. Varve-Like Sediments of the Walensee. In: Schluchter, C., ed., Moraines and Varves. Balkema, Rotterdam. 295–302

  • Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., et al., 2015. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. Journal of Sedimentary Research, 85(3): 230–246. https://doi.org/10.2110/jsr.2015.11

    Article  Google Scholar 

  • Lee, C., McKenzie, J. A., Sturm, Z. M., 1987. Carbon Isotope Fractionation and Changes in the Flux and Composition of Particulate Matter Resulting from Biological Activity during a Sediment Trap Experiment in Lake Greifen, Switzerland. Limnology and Oceanography, 32(1): 83–96. https://doi.org/10.4319/lo.1987.32.1.0083

    Article  Google Scholar 

  • Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7/8): 811–831. https://doi.org/10.1016/j.quascirev.2003.06.012

    Article  Google Scholar 

  • Lincoln, F., Pratson, J. I., 2000. Abstract: Debris Flows Versus Turbidity Currents: A Modeling Comparison of Their Dynamics and Deposits. AAPG Bulletin, 84(2000): 57–72. https://doi.org/10.1306/a9672b86-1738-11d7-8645000102c1865d

    Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092

    Article  Google Scholar 

  • Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. https://doi.org/10.1306/08171111061

    Article  Google Scholar 

  • Lu, J. M., Ruppel, S. C., Rowe, H. D., 2015. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 99(2): 333–357. https://doi.org/10.1306/08201414055

    Article  Google Scholar 

  • Macquaker, J. H. S., Taylor, K. G., Gawthorpe, R. L., 2007. High-Resolution Facies Analyses of Mudstones: Implications for Paleoenvironmental and Sequence Stratigraphic Interpretations of Offshore Ancient Mud- Dominated Successions. Journal of Sedimentary Research, 77(4): 324–339. https://doi.org/10.2110/jsr.2007.029

    Article  Google Scholar 

  • Mcpherson, J. G., Shanmugam, G., Moiola, R. J., 1987. Fan-Deltas and Braid Deltas: Varieties of Coarse-Grained Deltas. Geological Society of America Bulletin, 99(3): 331. https://doi.org/10.1130/0016-7606(1987)99<331:fabdvo>2.0.co;2

    Article  Google Scholar 

  • Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter- Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177–200. https://doi.org/10.1306/07231212048

    Article  Google Scholar 

  • Milliken, K., 2014. A Compositional Classification for Grain Assemblages in Fine-Grained Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 84(12): 1185–1199. https://doi.org/10.2110/jsr.2014.92

    Article  Google Scholar 

  • Morellón, M., Valero-Garcés, B., Anselmetti, F., et al., 2009. Late Quaternary Deposition and Facies Model for Karstic Lake Estanya (North-Eastern Spain). Sedimentology, 56(5): 1505–1534. https://doi.org/10.1111/j.1365-3091.2008.01044.x

    Article  Google Scholar 

  • Mulder, T., Syvitski, J. P. M., Migeon, S., et al., 2003. Marine Hyperpycnal Flows: Initiation, Behavior and Related Deposits: A Review. Marine and Petroleum Geology, 20(6/7/8): 861–882. https://doi.org/10.1016/j.marpetgeo.2003.01.003

    Article  Google Scholar 

  • Mulder, T., Zaragosi, S., Razin, P., et al., 2009. A New Conceptual Model for the Deposition Process of Homogenite: Application to a Cretaceous Megaturbidite of the Western Pyrenees (Basque Region, SW France). Sedimentary Geology, 222(3/4): 263–273. https://doi.org/10.1016/j.sedgeo.2009.09.013

    Article  Google Scholar 

  • Mullins, H. T., 1998. Environmental Change Controls of Lacustrine Carbonate, Cayuga Lake, New York. Geology, 26(5): 443. https://doi.org/10.1130/0091-7613(1998)026<0443:eccolc>2.3.co;2

    Article  Google Scholar 

  • Myrow, P. M., Hiscott, R. N., 1991. Shallow-Water Gravity-Flow Deposits, Chapel Island Formation, Southeast Newfoundland, Canada. Sedimentology, 38(5): 935–959. https://doi.org/10.1111/j.1365-3091.1991.tb01880.x

    Article  Google Scholar 

  • Osleger, D. A., Heyvaert, A. C., Stoner, J. S., et al., 2009. Lacustrine Turbidites as Indicators of Holocene Storminess and Climate: Lake Tahoe, California and Nevada. Journal of Paleolimnology, 42(1): 103–122. https://doi.org/10.1007/s10933-008-9265-8

    Article  Google Scholar 

  • Pacton, M., Fiet, N., Gorin, G. E., 2007. Bacterial Activity and Preservation of Sedimentary Organic Matter: The Role of Exopolymeric Substances. Geomicrobiology Journal, 24(7/8): 571–581. https://doi.org/10.1080/01490450701672042

    Article  Google Scholar 

  • Platt, N. H., 1989. Lacustrine Carbonates and Pedogenesis: Sedimentology and Origin of Palustrine Deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36(4): 665–684. https://doi.org/10.1111/j.1365-3091.1989.tb02092.x

    Article  Google Scholar 

  • Platt, N., Wright, V. P., 1991. Lacustrine Carbonates: Facies Models, Facies Distributions and Hydrocarbon Aspects. In: Anadón, P., Cabrera, Li., Kelts, K., eds., Lacustrine Facies Analysis. John Wiley & Sons, New York. 57–74

  • Pu, X. G., Zhou, L. H., Xiao, D. Q., et al., 2011. Lacustrine Carbonates in the Southwest Margin of the Qikou Sag, Huanghua Depression, Bohai Bay Basin. Petroleum Exploration and Development, 38(2): 136–144. https://doi.org/10.1016/s1876-3804(11)60022-0

    Article  Google Scholar 

  • Qiu, L. W., Jiang, Z. X., Liang, H. B., 2010. Lime Mudstone—A Kind of Carbonate Rock of Terrigenous Mechanical Origin. Journal of China University of Petroleum, 34(6): 1–7 (in Chinese with English Abstract)

    Google Scholar 

  • Ramos-Guerrero, E., Berrio, I., Fornós, J., et al., 2000. The Middle Miocene Son Verdera Lacustrine-Palustrine System (Santa Margalida Basin, Mallorca). AAPG Studies in Geology, 46: 441–448

    Google Scholar 

  • Ren, Y. Q., 1986. Depositional Environments of Shulu Depression-Viewed from the Point of Micropaleobotanic Florae. Acta Sedimentologica Sinica, 4(4): 101–108 (in Chinese with English Abstract)

    Google Scholar 

  • Romero-Viana, L., Julià, R., Camacho, A., et al., 2008. Climate Signal in Varve Thickness: Lake la Cruz (Spain), a Case Study. Journal of Paleolimnology, 40(2): 703–714. https://doi.org/10.1007/s10933-008-9194-6

    Article  Google Scholar 

  • Schieber, J., Southard, J. B., Schimmelmann, A., 2010. Lenticular Shale Fabrics Resulting from Intermittent Erosion of Water-Rich Muds— Interpreting the Rock Record in the Light of Recent Flume Experiments. Journal of Sedimentary Research, 80(1): 119–128. https://doi.org/10.2110/jsr.2010.005

    Article  Google Scholar 

  • Soreghan, M. J., 1998. Facies Distributions within an Ancient Asymmetric Lake Basin: The Apache Canyon Formation, Bisbee Basin, Arizona. In: Pitman, J. K., Carroll, A. R., eds., Modern and Ancient Lake Systems. Utah Geological Assocociation Guidebook 26. C & M Press, Denver. 163–190

  • Stabel, H., 1985. Mechanisms Controlling the Sedimentation Sequence of Various Elements in Prealpine Lakes. In: Stumm, W., ed., Chemical Processes in Lakes. John Wiley and Sons, New York. 143–167

  • Stanley, D. J., 1981. Unifites: Structureless Muds of Gravity-Flow Origin in Mediterranean Basins. Geo-Marine Letters, 1(2): 77–83. https://doi.org/10.1007/bf02463322

    Article  Google Scholar 

  • Stow, D. A. V., Bowen, A. J., 1978. Origin of Lamination in Deep Sea, Fine-Grained Sediments. Nature, 274(5669): 324–328. https://doi.org/10.1038/274324a0

    Article  Google Scholar 

  • Stow, D. A. V., Shanmugam, G., 1980. Sequence of Structures in Fine-Grained Turbidites: Comparison of Recent Deep-Sea and Ancient Flysch Sediments. Sedimentary Geology, 25(1/2): 23–42. https://doi.org/10.1016/0037-0738(80)90052-4

    Article  Google Scholar 

  • Sturm, M., Matter, A., 1978. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In: Matte, A., Tucker, M. E., Modern and Ancient Lake Sediments. International Association of Sedimentologists Special Publication, 2: 147–168. https://doi.org/10.1002/9781444303698.ch8

    Google Scholar 

  • Sumner, E. J., Talling, P. J., Amy, L. A., 2009. Deposits of Flows Transitional between Turbidity Current and Debris Flow. Geology, 37(11): 991–994. https://doi.org/10.1130/g30059a.1

    Article  Google Scholar 

  • Talling, P. J., Masson, D. G., Sumner, E. J., et al., 2012. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, 59(7): 1937–2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x

    Article  Google Scholar 

  • Taylor, K. G., Macquaker, J. H. S., 2000. Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession: The Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 131(1/2): 77–86. https://doi.org/10.1016/s0037-0738(00)00002-6

    Article  Google Scholar 

  • Teranes, J. L., McKenzie, J. A., Bernasconi, S. M., et al., 1999. A Study of Oxygen Isotopic Fractionation during Bio-Induced Calcite Precipitation in Eutrophic Baldeggersee, Switzerland. Geochimica et Cosmochimica Acta, 63(13/14): 1981–1989. https://doi.org/10.1016/s0016-7037(99)00049-6

    Article  Google Scholar 

  • Tripsanas, E. K., Bryant, W. R., Phaneuf, B. A., 2004. Depositional Processes of Uniform Mud Deposits (Unifites), Hedberg Basin, Northwest Gulf of Mexico: New Perspectives. AAPG Bulletin, 88(6): 825–840. https://doi.org/10.1306/01260403104

    Article  Google Scholar 

  • Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Wiley-Blackwell, London

    Book  Google Scholar 

  • Valero-Garcés, B., Morellón, M., Moreno, A., et al., 2014. Lacustrine Carbonates of Iberian Karst Lakes: Sources, Processes and Depositional Environments. Sedimentary Geology, 299(2): 1–29. https://doi.org/10.1016/j.sedgeo.2013.10.007

    Article  Google Scholar 

  • Wang, D., Feng, X., 2002. Research on Carbon and Oxygen Geochemistry of Lower Paleozoic in North China. Acta Geologica Sinica—Chinese Edition, 76(3): 400–408 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, G. L., Wang, T. G., Simoneit, B. R. T., et al., 2010. Sulfur Rich Petroleum Derived from Lacustrine Carbonate Source Rocks in Bohai Bay Basin, East China. Organic Geochemistry, 41(4): 340–354. https://doi.org/10.1016/j.orggeochem.2009.12.010

    Article  Google Scholar 

  • Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897–3912. https://doi.org/10.1016/0016-7037(96)00209-8

    Article  Google Scholar 

  • Zha, X. P., Zhao, Y. Y., Zheng, Y. F., 2010. An Online Method Combining a Gasbench II with Continuous Flow Isotope Ratio Mass Spectrometry to Determine the Content and Isotopic Compositions of Minor Amounts of Carbonate in Silicate Rocks. Rapid Communications in Mass Spectrometry, 24(15): 2217–2226. https://doi.org/10.1002/rcm.4632

    Article  Google Scholar 

  • Zhang, J. G., Jiang, Z. X., Jiang, X. L., et al., 2016. Oil Generation Induces Sparry Calcite Formation in Lacustrine Mudrock, Eocene of East China. Marine and Petroleum Geology, 71(3): 344–359. https://doi.org/10.1016/j.marpetgeo.2016.01.007

    Article  Google Scholar 

  • Zhang, W. C., Cui, Z. Q., Han, C. Y., et al., 2001. Basin Evolution during Palaeogene and Petroleum Potentials of Central Hebei (Jizhong) Depression. Journal of Paleolimnology, 3(1): 45–54 (in Chinese with English Abstract)

    Google Scholar 

  • Zhang, X. W., Scholz, C. A., 2015. Turbidite Systems of Lacustrine Rift Basins: Examples from the Lake Kivu and Lake Albert Rifts, East Africa. Sedimentary Geology, 325(6): 177–191. https://doi.org/10.1016/j.sedgeo.2015.06.003

    Article  Google Scholar 

  • Zhao, X. Z., Jiang, Z. X., Zhang, R. F., et al., 2015. Geological Characteristics and Exploration Practices of Special-Lithology Tight Oil Reservoirs in Continental Rift Basins: A Case Study of Tight Oil in Shahejie Formation, Shulu Sag. Acta Petrolei Sinica, 36(B11): 1–9 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, X. Z., Li, Q., Jiang, Z. X., et al., 2014. Organic Geochemistry and Reservoir Characterization of the Organic Matter-Rich Calcilutite in the Shulu Sag, Bohai Bay Basin, North China. Marine and Petroleum Geology, 51(2): 239–255. https://doi.org/10.1016/j.marpetgeo.2013.12.014

    Article  Google Scholar 

  • Zheng, L. J., Jiang, Z. X., Liu, H., et al., 2015. Core Evidence of Paleoseismic Events in Paleogene Deposits of the Shulu Sag in the Bohai Bay Basin, East China, and Their Petroleum Geologic Significance. Sedimentary Geology, 328: 33–54. https://doi.org/10.1016/j.sedgeo.2015.07.013

    Article  Google Scholar 

  • Zolitschka, B., 2007. Varved Lake Sediments. In: Saraswat, R., Nigam, R., eds., Encyclopedia of Quaternary Science. Elsevier, Amsterdam. 3105–3114

    Google Scholar 

  • Zolitschka, B., Francus, P., Ojala, A. E. K., et al., 2015. Varves in Lake Sediments—A Review. Quaternary Science Reviews, 117(6): 1–41. https://doi.org/10.1016/j.quascirev.2015.03.019

    Article  Google Scholar 

Download references

Acknowledgements

The finances for this study were provided by the National Major Research Program for Science and Technology of China (No. 2017ZX05009-002) and the National Natural Science Fund (No. 41772090). We are grateful to the Huabei (North China) Oil Company for permitting data access. The final publication is available at Springer via https://doi.org/10.1007/s12583-016-0927-x.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaixing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Jiang, Z., Han, C. et al. Genesis and implications of the composition and sedimentary structure of fine-grained carbonate rocks in the Shulu sag. J. Earth Sci. 28, 1047–1063 (2017). https://doi.org/10.1007/s12583-016-0927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0927-x

Keywords

Navigation