Skip to main content
Log in

Numerical modeling of fracture propagation in orthotropic composite materials using an adaptive phase-field method

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present an adaptive phase-field method for modeling crack propagation in orthotropic composites. The numerical approach extends an adaptive phase-field formulation, originally developed for isotropic linear elastic materials, to general orthotropic materials. The method to evaluate the constitutive tensor for a general orthotropic material is first discussed. The modification of the phase-field equation to incorporate the effect of orthotropy on damage evolution is then described. Simple numerical patch tests are formulated and used to validate the developed orthotropic material model. The coupled numerical framework is then utilized to study the influence of fiber orientation, and mechanical properties of fibers and matrix on the failure processes in orthotropic composites. The numerical studies indicate that the macro-scale failure behavior of laminates is primarily influenced by the mechanical properties of the matrix. Furthermore, the macro-scale fracture toughness of laminates increases when the individual lamina’s transverse normal critical energy release rate is large in comparison with the critical energy release rate of the adhesive. In this configuration, partial delamination of the lamina interface is favored, and therefore, a progressive ductile failure of laminates is observed. This observation can be used to engineer laminates from a damage tolerance-based design perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krueger, R.: Virtual crack closure technique: history, approach, and applications. Appl. Mech. Rev. 57(2), 109–143 (2004)

    Article  Google Scholar 

  2. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 30(35), 379–386 (1968)

    Article  Google Scholar 

  3. Yu, H., Kuna, M.: Interaction integral method for computation of crack parameters k–t-a review. Eng. Fract. Mech. 249, 107722 (2021)

    Article  Google Scholar 

  4. Kim, H.-G.: Interface element method (IEM) for a partitioned system with non-matching interfaces. Comput. Methods Appl. Mech. Eng. 191(29–30), 3165–3194 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho, Y.-S., Jun, S., Im, S., Kim, H.-G.: An improved interface element with variable nodes for non-matching finite element meshes. Comput. Methods Appl. Mech. Eng. 194(27–29), 3022–3046 (2005)

    Article  MATH  Google Scholar 

  6. Settgast, R.R., Fu, P., Walsh, S.D.C., White, J.A., Annavarapu, C., Ryerson, F.J.: A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions. Int. J. Numer. Anal. Meth. Geomech. 41(5), 627–653 (2017)

    Article  Google Scholar 

  7. Duarte, C.A., Oden, J.T.: An HP adaptive method using clouds. Comput. Methods Appl. Mech. Eng. 139(1–4), 237–262 (1996)

    Article  MATH  Google Scholar 

  8. Duarte, C.A., Babuška, I., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000)

    Article  MathSciNet  Google Scholar 

  9. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field Fe implementations. Int. J. Numer. Meth. Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45–48), 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Alessi, R., Freddi, F.: Phase-field modelling of failure in hybrid laminates. Compos. Struct. 181, 9–25 (2017)

    Article  Google Scholar 

  15. Bleyer, J., Alessi, R.: Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput. Methods Appl. Mech. Eng. 336, 213–236 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reinoso, J., Arteiro, A., Paggi, M., Camanho, P.: Strength prediction of notched thin ply laminates using finite fracture mechanics and the phase field approach. Compos. Sci. Technol. 150, 205–216 (2017)

    Article  Google Scholar 

  17. Natarajan, S., Annabattula, R.K.: Modeling crack propagation in variable stiffness composite laminates using the phase field method. Compos. Struct. 209, 424–433 (2019)

    Article  Google Scholar 

  18. Zhang, P., Hu, X., Bui, T.Q., Yao, W.: Phase field modeling of fracture in fiber reinforced composite laminate. Int. J. Mech. Sci. 161, 105008 (2019)

    Article  Google Scholar 

  19. Denli, F.A., Gültekin, O., Holzapfel, G.A., Dal, H.: A phase-field model for fracture of unidirectional fiber-reinforced polymer matrix composites. Comput. Mech. 65(4), 1149–1166 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gültekin, O., Dal, H., Holzapfel, G.A.: A phase-field approach to model fracture of arterial walls: theory and finite element analysis. Comput. Methods Appl. Mech. Eng. 312, 542–566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pranavi, D., Rajagopal, A., Reddy, J.: Interaction of anisotropic crack phase field with interface cohesive zone model for fiber reinforced composites. Compos. Struct. 270, 114038 (2021)

    Article  Google Scholar 

  22. Muixí, A., Fernández-Méndez, S., Rodríguez-Ferran, A.: Adaptive refinement for phase-field models of brittle fracture based on Nitsche’s method. Comput. Mech. 66(1), 69–85 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Udhayaraman, R., Mulay, S.S.: Multi-scale approach based constitutive modelling of plain woven textile composites. Mech. Mater. 112, 172–192 (2017)

    Article  Google Scholar 

  24. Gibson, R.F.: Principles of Composite Material Mechanics. CRC Press, Taylor and Francis group (2016)

    Book  Google Scholar 

  25. Muixí, A.: Locally adaptive phase field models and transition to fracture. PhD thesis, Universitat Politécnica de Catalunya (2020)

  26. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228, 44–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int. J. Numer. Meth. Eng. 92(2), 206–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Annavarapu, C.: An efficient finite element method for interface problems. PhD thesis, Duke University (2013)

Download references

Acknowledgements

The support from the Ministry of Education, Government of India, and IIT Madras to the first, second, and fourth authors is gratefully acknowledged under the Start-up Research Grant, SP21221642CESERB008957 and the Subsurface Mechanics and Geo-Energy Research Grant, SB20210856CEMHRD008957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Annavarapu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, I., Annavarapu, C., Mulay, S.S. et al. Numerical modeling of fracture propagation in orthotropic composite materials using an adaptive phase-field method. Int J Adv Eng Sci Appl Math 15, 144–154 (2023). https://doi.org/10.1007/s12572-023-00331-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-023-00331-w

Keywords

Navigation