Skip to main content
Log in

A phase-field fracture model for brittle anisotropic materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Anisotropy is inherent in many materials, either because of the manufacturing process, or due to their microstructure, and can markedly influence the failure behavior. Anisotropic materials obviously possess both anisotropic elasticity and anisotropic fracture surface energy. Phase-field methods are elegant and mathematically well-grounded, and have become popular for simulating isotropic and anisotropic brittle fracture. Here, we developed a variational phase-field model for strongly anisotropic fracture, which accounts for the anisotropy both in elastic strain energy and in fracture surface energy, and the asymmetric behavior of cracks in traction and in compression. We implement numerically our higher-order phase-field model with mixed finite element, inspired by formulations for plate/shell elements, where similar continuity requirements exist. For strongly anisotropic materials, as reported in the recent experiments, one could obtain several crack propagation directions for a given loading configuration, depending on imperfections of the initial crack. From an energy point of view, the selection of crack propagation direction is dictated by local principle of the generalized maximum energy release rate. Herein, for the first time we examine numerically this local principle, reproduce the crack behaviors observed in recent experiments. Numerical simulations exhibit all the features of strongly anisotropic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. https://github.com/bin-mech/anisotropic_phase-field_fracture

References

  1. Romero V, Roman B, Hamm E, Cerda E (2013) Spiral tearing of thin films. Soft Matter 9(34):8282

    Article  Google Scholar 

  2. Lepillier B, Yoshioka K, Parisio F, Bakker R, Bruhn D (2020) Variational phase-field modeling of hydraulic fracture interaction with natural fractures and application to enhanced geothermal systems. J Geophys Res: Solid Earth 125(7):e2020JB019856

    Article  Google Scholar 

  3. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen L, Verhoosel CV, de Borst R (2018) Discrete fracture analysis using locally refined T-splines. Internat J Numer Methods in Eng 116:117

    Article  MathSciNet  Google Scholar 

  5. Chen L, Li B, de Borst R (2019) Energy conservation during remeshing in the analysis of dynamic fracture. Internat J Numer Methods Eng 120:433

    Article  MathSciNet  Google Scholar 

  6. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Internat J Numer Methods Eng 48:1741

    Article  MATH  Google Scholar 

  7. Gao Y, Liu Z, Zeng Q, Wang T, Zhuang Z, Hwang KC (2017) Theoretical and numerical prediction of crack path in the material with anisotropic fracture toughness. Eng Fracture Mech 180:330

    Article  Google Scholar 

  8. Cervera M, Barbat G, Chiumenti M, Wu JY (2021) A comparative review of xfem, mixed fem and phase-field models for quasi-brittle cracking, Arch Comput Methods Eng, 1–75

  9. Peerlings RHJ, de Borst R, Brekelmans WAM, de Vree JHP (1996) Gradient enhanced damage for quasi-brittle materials. Internat J Numer Methods Eng 39:3391

    Article  MATH  Google Scholar 

  10. Verhoosel CV, Scott MA, Hughes TJR, de Borst R (2011) An isogeometric analysis approach to gradient damage models. Internat J Numer Methods in Eng 86:115

    Article  MathSciNet  MATH  Google Scholar 

  11. Pham K, Amor H, Marigo JJ, Maurini C (2011) Gradient damage models and their use to approximate brittle fracture. Internat J Damage Mech 20:618

    Article  Google Scholar 

  12. De Lorenzis L, Maurini C (2021) Nucleation under multi-axial loading in variational phase-field models of brittle fracture, Internat J Fracture, p 1–21

  13. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48:797

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9:411

    Article  MathSciNet  MATH  Google Scholar 

  15. Tanné E, Li T, Bourdin B, Marigo JJ, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80

    Article  MathSciNet  Google Scholar 

  16. de Borst R, Verhoosel CV (2016) Gradient damage vs phase-field approaches for fracture: Similarities and differences. Comput Methods Appl Mech Engrg 312:78

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin B, Steinke C, Kaliske M (2020) Formulation and implementation of strain rate-dependent fracture toughness in context of the phase-field method. Internat J Numer Methods Eng 121(2):233

    Article  MathSciNet  Google Scholar 

  18. Bleyer J, Alessi R (2018) Phase-field modeling of anisotropic brittle fracture including several damage mechanisms. Comput Methods Appl Mech Engrg 336:213

    Article  MathSciNet  MATH  Google Scholar 

  19. Takei A, Roman B, Bico J, Hamm E, Melo F (2013) Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the Wulff plot. Phys Rev Lett 110:144301

    Article  Google Scholar 

  20. Judt PO, Ricoeur A, Linek G (2015) Crack path prediction in rolled aluminum plates with fracture toughness orthotropy and experimental validation. Eng Fracture Mech 138:33

    Article  Google Scholar 

  21. Judt PO, Zarges JC, Feldmann M, Ricoeur A, Heim HP (2019) Deflecting mode-i cracks in anisotropic materials. Mech Materials 136:103060

    Article  Google Scholar 

  22. Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Internat J Numer Methods Eng 102:711

    Article  MathSciNet  MATH  Google Scholar 

  23. Li B, Maurini C (2019) Crack kinking in a variational phase-field model of brittle fracture with strongly anisotropic surface energy. J Mech Phys Solids 125:502

    Article  MathSciNet  MATH  Google Scholar 

  24. Torabi S, Lowengrub J (2012) Simulating interfacial anisotropy in thin-film growth using an extended cahn-hilliard model. Phys Rev E 85(4):041603

    Article  Google Scholar 

  25. Teichtmeister S, Kienle D, Aldakheel F, Keip MA (2017) Phase field modeling of fracture in anisotropic brittle solids. Internat J Non-Linear Mech 97:1

    Article  Google Scholar 

  26. Kakouris EG, Triantafyllou SP (2019) Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy. Comput Methods Appl Mech Engrg 357:112503

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma R, Sun W (2020) FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials. Comput methods appl Mech engrg 362:112781

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu Y, Cheng C, Ziaei-Rad V, Shen Y (2021) A micromechanics-informed phase field model for brittle fracture accounting for unilateral constraint. Eng Fracture Mech 241:107358

    Article  Google Scholar 

  29. van Dijk NP, Espadas-Escalante JJ, Isaksson P (2020) Strain energy density decompositions in phase-field fracture theories for orthotropy and anisotropy. Internat J Solids Struct 196:140

    Article  Google Scholar 

  30. Storm J, Supriatna D, Kaliske M (2020) The concept of representative crack elements for phase-field fracture: Anisotropic elasticity and thermo-elasticity. Internat J Numer Methods Eng 121(5):779

    Article  MathSciNet  Google Scholar 

  31. Zhang S, Jiang W, Tonks MR (2020) A new phase field fracture model for brittle materials that accounts for elastic anisotropy. Comput Methods Appl Mech Engrg 358:112643

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang S, Kim DU, Jiang W, Tonk MR (2021) A phase field model of crack propagation in anisotropic brittle materials with preferred fracture planes. Comput Mater Sci 193:110400

    Article  Google Scholar 

  33. He QC, Shao Q (2019) Closed-form coordinate-free decompositions of the two-dimensional strain and stress for modeling tension-compression dissymmetry. J Appl Mech 86(3):031007

    Article  Google Scholar 

  34. Alnæs M, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN (2015) The FEniCS project version 1.5. Arch Numer Software 3:9

    Google Scholar 

  35. Hale JS, Brunetti M, Bordas SPA, Maurini C (2018) Simple and extensible plate and shell finite element models through automatic code generation tools. Comput & Struct 209:163

    Article  Google Scholar 

  36. Marigo JJ, Maurini C, Pham K (2016) An overview of the modelling of fracture by gradient damage models. Meccanica 51:3107

    Article  MathSciNet  MATH  Google Scholar 

  37. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209

    Article  MATH  Google Scholar 

  38. Desmorat B, Auffray N (2019) Space of 2d elastic materials: a geometric journey. Contin Mech Thermodyn 31(4):1205

    Article  MathSciNet  MATH  Google Scholar 

  39. Mehrabadi MM, Cowin SC (1990) Eigentensors of linear anisotropic elastic materials. The Quart J Mech Appl Math 43(1):15

    Article  MathSciNet  MATH  Google Scholar 

  40. Horn RA, Johnson CR (1994) Topics in matrix analysis. Cambridge University Press, New York

    MATH  Google Scholar 

  41. Lubarda V, Krajcinovic D, Mastilovic S (1994) Damage model for brittle elastic solids with unequal tensile and compressive strengths. Eng Fracture Mech 49(5):681

    Article  Google Scholar 

  42. Hale JS, Brunetti M, Bordas SP, Maurini C (2018) Simple and extensible plate and shell finite element models through automatic code generation tools. Comput & Struct 209:163

    Article  Google Scholar 

  43. Li B, Millán D, Torres-Sánchez A, Roman B, Arroyo M (2018) A variational model of fracture for tearing brittle thin sheets. J Mech Phys Solids 119:334

    Article  MathSciNet  Google Scholar 

  44. Chen L, Li B, de Borst R (2021) The use of powell-sabin b-splines in a higher-order phase-field model for crack kinking. Comput Mech 67(1):127

    Article  MathSciNet  MATH  Google Scholar 

  45. Nguyen TT, Yvonnet J, Waldmann D, He QC (2020) Implementation of a new strain split to model unilateral contact within the phase field method. Inter J Numer Methods Eng 121(21):4717

    Article  MathSciNet  Google Scholar 

  46. Alnæs MS, Logg A, Ølgaard KB, Rognes ME, Wells GN (2014) Unified form language: A domain-specific language for weak formulations of partial differential equations. ACM Trans Math Softw (TOMS) 40(2):1

    Article  MathSciNet  MATH  Google Scholar 

  47. Logg A, Mardal KA, Wells GN (2012) Automated solution of differential equations by the finite element method: The FEniCS book, vol 84. Springer, Heidelberg-Dordrecht

    MATH  Google Scholar 

  48. Chambolle A, Francfort GA, Marigo JJ (2009) When and how do cracks propagate? J Mech Phys Solids 57(9):1614

    Article  MathSciNet  MATH  Google Scholar 

  49. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2015) An assessment of the phase field formulation for crack growth. Comput Methods App Mech Eng 294:313

    Article  MathSciNet  MATH  Google Scholar 

  50. Kristensen PK, Niordson CF, Martínez-Pañeda E (2021) An assessment of phase field fracture: crack initiation and growth. Philos Trans Roy Soc A 379(2203):20210021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Chen, L., Wang, N. et al. A phase-field fracture model for brittle anisotropic materials. Comput Mech 70, 931–943 (2022). https://doi.org/10.1007/s00466-022-02192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02192-9

Keywords

Navigation