Skip to main content
Log in

A length insensitive modified phase field model for quasi-brittle failure and brittle fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In response to the problem that the standard AT2 phase field model cannot effectively model quasi-brittle failure and the existence of length dependence, a new modified phase field model is presented in this paper. By introducing an additional energy, the competing relationship between elastic strain energy and dissipation energy during fracture is changed. A new crack dissipation functional is established using the energy equivalent approach. By introducing a novel rational degradation function, not only can the strength of material failure be effectively utilized, but the model can also reproduce the cohesive softening relationship. A multi-field finite element method is used to discretize the model governing equations, and the equations are solved by an efficient BFGS monolithic algorithm. Finally, some representative numerical examples are used to analyze the effects of parameters in degradation function, length scale and mesh size on the results. The presented numerical simulation results demonstrate length scale and mesh scale independence, and are in good agreement with the experimental results and previous numerical results. At the same time, the numerical results also exhibit cohesive softening properties similar to the current phase field cohesive zone model. These results verify the robustness and effectiveness of the modified phase field model presented in this paper for simulating quasi-brittle failure and brittle fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46:131–150

    Article  MathSciNet  Google Scholar 

  2. Bayesteh H, Afshar A, Mohammdi S (2015) Thermo-mechanical fracture study of inhomogeneous cracked solids by the extended isogeometric analysis method. Eur J Mech /A Solids 51:123–139

    Article  MathSciNet  Google Scholar 

  3. Moës N, Belytschko T (2002) Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813–833

    Article  Google Scholar 

  4. Gao Y, Liu Z, Wang T et al (2019) XFEM modeling for curved fracture in the anisotropic fracture toughness medium. Comput Mech 63:869–883

    Article  MathSciNet  Google Scholar 

  5. Rybicki E, Kanninen M (1977) A finite element calculation of stress intensity factors by a modified crack closure integral. Eng Fract Mech 9(4):931–938

    Article  Google Scholar 

  6. Sethuraman R, Maiti S (1988) Finite element based computation of strain energy release rate by modified crack closure integral. Eng Fract Mech 30(2):227–231

    Article  Google Scholar 

  7. Song JH, Areias PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Meth Eng 67(6):868–893

    Article  Google Scholar 

  8. Meer FP, Sluys LJ (2009) A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int J Fract 158(2):107–124

    Article  Google Scholar 

  9. Ling D, Yang Q, Cox B (2009) An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int J Fract 156(1):53–73

    Article  Google Scholar 

  10. Fang XJ, Yang QD, Cox BN et al (2011) An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int J Numer Meth Eng 88(9):841–861

    Article  MathSciNet  Google Scholar 

  11. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng 61:2316–2343

    Article  Google Scholar 

  12. Rabczuk T, Zi G, Bordas S et al (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455

    Article  Google Scholar 

  13. Chen BY, Pinho ST, De Carvalho NV et al (2014) A floating node method for the modelling of discontinuities in composites. Eng Fract Mech 127:104–134

    Article  Google Scholar 

  14. Chen BY, Tay TE, Pinho ST et al (2016) Modelling the tensile failure of composites with the floating node method. Comput Methods Appl Mech Eng 308:414–442

    Article  MathSciNet  Google Scholar 

  15. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically-consistent phase field models of fracture: Variational principles and multi-field FE. Int J Numer Methods Eng 83: 1273–1311.

  16. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Method Appl Mech Eng 199:2765–2778

    Article  MathSciNet  Google Scholar 

  17. Ambati M, Gerasimov T, Lorenzis LD (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  Google Scholar 

  18. Paggi M, Reinoso J (2017) Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Comput Methods Appl Mech Eng 321:145–172

    Article  MathSciNet  Google Scholar 

  19. Tanné E, Li T, Bourdin B et al (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99

    Article  MathSciNet  Google Scholar 

  20. Fei F, Choo J (2020) A phase-field model of frictional shear fracture in geologic materials. Comput Methods Appl Mech Eng 369:113265

    Article  MathSciNet  Google Scholar 

  21. Lenarda P, Reinoso J, Paggi M (2022) Multi-phase field approach to tensile fracture and compressive crushing in grained heterogeneous materials. Theoret Appl Fract Mech 122:103632

    Article  Google Scholar 

  22. Francfort GA, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  Google Scholar 

  23. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  Google Scholar 

  24. Borden MJ, Verhoosel CV, Scott MA et al (2012) A phase-field description of dynamic brittle fracture. Comput Method Appl Mech Eng 217–220:77–95

    Article  MathSciNet  Google Scholar 

  25. Pham K, Amor H, Marigo J-J et al (2011) Gradient damage models and their use to approximate brittle fracture. Int J Damage Mech 20:618–652

    Article  Google Scholar 

  26. Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99

    Article  MathSciNet  Google Scholar 

  27. Feng DC, Wu JY (2018) Phase-field regularized cohesive zone model (CZM) and size effect of concrete. Eng Fract Mech 197:66–79

    Article  Google Scholar 

  28. Nguyen KD, Thanh CL, Vogel F et al (2022) Crack propagation in quasi-brittle materials by fourth-order phase-field cohesive zone model. Theoret Appl Fract Mech 118:103236

    Article  Google Scholar 

  29. Fang J, Wu C, Rabczuk T et al (2020) Phase field fracture in elasto-plastic solids: a length-scale insensitive model for quasi-brittle materials. Comput Mech 66:931–961

    Article  MathSciNet  Google Scholar 

  30. Azinpour E, Cruz DJ, Cesar de Sa JMA et al (2021) Phase-field approach in elastoplastic solids: application of an iterative staggered scheme and its experimental validation. Comput Mech 68:255–269

    Article  MathSciNet  Google Scholar 

  31. Miehe C, Hofacker M, Schänzel LM et al (2015) Phase field modeling of fracture in multi-physics problems. part II. coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl Mech Eng 294:486–522

    Article  MathSciNet  Google Scholar 

  32. Ren H, Zhuang X, Anitescu C et al (2019) An explicit phase field method for brittle dynamic fracture. Comput Struct 217:45–56

    Article  Google Scholar 

  33. Verhoosel CV, Borst R (2013) A phase-field model for cohesive fracture. Int J Numer Meth Eng 96:43–62

    Article  MathSciNet  Google Scholar 

  34. Chen L, Borst R (2021) Phase field modelling of cohesive fracture. Eur J Mech /A Solids 90:104343

    Article  MathSciNet  Google Scholar 

  35. Su Y, Fu G, Liu C et al (2021) Thermo-elasto-plastic phase-field modelling of mechanical behaviours of sintered nano-silver with randomly distributed micro-pores. Comput Method Appl Mech Eng 378:113729

    Article  MathSciNet  Google Scholar 

  36. Badnava H, Msekh MA, Etemadi E et al (2018) An h-adaptive thermo-mechanical phase field model for fracture. Fin Elem Anal Des 138:31–47

    Article  Google Scholar 

  37. Martínez-Pañeda E, Golahmar A, Niordson CF (2018) A phase field formulation for hydrogen assisted cracking. Comput Method Appl Mech Eng 342:742–761

    Article  MathSciNet  Google Scholar 

  38. Kristensen PK, Niordson CF, Martínez-Paneda E (2020) Applications of phase field fracture in modelling hydrogen assisted failures. Theoret Appl Fract Mech 110:102837

    Article  Google Scholar 

  39. Valverde-González A, Martínez-Pañeda E, Quintanas-Corominas A et al (2022) Computational modelling of hydrogen assisted fracture in polycrystalline materials. Int J Hydrogen Energy 47(75):32235–32251

    Article  Google Scholar 

  40. Marulli MR, Valverde-Gonzalez A, Quintanas-Corominas A et al (2022) A combined phase-field and cohesive zone model approach for crack propagation in layered structures made of nonlinear rubber-like materials. Comput Methods Appl Mech Eng 395:115007

    Article  MathSciNet  Google Scholar 

  41. Kakouris EG, Triantafyllou SP (2019) Phase-field material point method for dynamic brittle fracture with isotropic and anisotropic surface energy. Comput Method Appl Mech Eng 357:112503

    Article  MathSciNet  Google Scholar 

  42. Rahimi MN, Moutsanidis G (2022) Modeling dynamic brittle fracture in functionally graded materials using hyperbolic phase field and smoothed particle hydrodynamics. Comput Method Appl Mech Eng 401:115642

    Article  MathSciNet  Google Scholar 

  43. Ren H, Zhuang X, Rabczuk T (2020) A higher order nonlocal operator method for solving partial differential equations. Comput Method Appl Mech Eng 367:113132

    Article  MathSciNet  Google Scholar 

  44. Zhuang X, Ren H, Rabczuk T (2021) Nonlocal operator method for dynamic brittle fracture based on an explicit phase field model. Eur J Mech/A Solids 90:104380

    Article  MathSciNet  Google Scholar 

  45. Borden JM, Hughes TJR, Landis CM et al (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Method Appl Mech Eng 273:100–118

    Article  MathSciNet  Google Scholar 

  46. Li Y, Yu T, Natarajan S et al (2023) A dynamic description of material brittle failure using a hybrid phase-field model enhanced by adaptive isogeometric analysis. Eur J Mech/A Solids 97:104783

    Article  MathSciNet  Google Scholar 

  47. Goswami S, Anitescu C, Chakraborty S et al (2020) Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoret Appl Fract Mech 106:102447

    Article  Google Scholar 

  48. Samaniego E, Anitescu C, Goswami S et al (2020) An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng 362:112790

    Article  MathSciNet  Google Scholar 

  49. Feng SZ, Xu Y, Han X et al (2021) A phase field and deep-learning based approach for accurate prediction of structural residual useful life. Comput Methods Appl Mech Eng 383:113885

    Article  MathSciNet  Google Scholar 

  50. Xie G, Jia H, Li Hao et al (2023) A life prediction method of mechanical structures based on the phase field method and neural network. Appl Math Modell 119:782–802

    Article  MathSciNet  Google Scholar 

  51. Feng Y, Wang Q, Wu D et al (2021) Machine learning aided phase field method for fracture mechanics. Int J Eng Sci 169:103587

    Article  MathSciNet  Google Scholar 

  52. Bui TQ, Hu X (2021) A review of phase-field models, fundamentals and their applications to composite laminates. Eng Fract Mech 248:107705

    Article  Google Scholar 

  53. Zhuang X, Zhou S, Huynh GD et al (2022) Phase field modeling and computer implementation: A review. Eng Fract Mech 262:108234

    Article  Google Scholar 

  54. Chen Y, Vasiukov D, Gélébart L et al (2019) A FFT solver for variational phase-field modeling of brittle fracture. Comput Method Appl Mech Eng 349:167–190

    Article  MathSciNet  Google Scholar 

  55. Xu Z, Xie W (2021) Phase-field model for brittle fracture based on the inner-element edge-based smoothed finite method (IES-FEM). Eng Fract Mech 254:107919

    Article  Google Scholar 

  56. Vicentini F, Carrara P, Lorenzis LD (2023) Phase-field modeling of brittle fracture in heterogeneous bars. Eur J Mech/A Solids 97:104826

    Article  MathSciNet  Google Scholar 

  57. Liu G, Li Q, Msekh MA et al (2016) Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Comput Mater Sci 121:35–47

    Article  Google Scholar 

  58. Wu JY, Nguyen VP, Nguyen CT et al (2020) Phase-field modeling of fracture. Adv Appl Mech 53:1–183

    Article  Google Scholar 

  59. Miehe C, Schanzel LM, Ulmer H (2015) Phase field modeling of fracture in multi-physics problems. part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Comput Method Appl Mech Eng 294:449–485

    Article  MathSciNet  Google Scholar 

  60. Teichtmeister S, Kienle D, Aldakheel F et al (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21

    Article  Google Scholar 

  61. Yu Y, Hou C, Zhao M (2023) Phase field model for brittle fracture using threshold strategy. Theoret Appl Fract Mech 125:103831

    Article  Google Scholar 

  62. Quintanas-Corominas A, Reinoso J, Casonic E et al (2019) A phase field approach to simulate intralaminar and translaminar fracture in long fiber composite materials. Compos Struct 220:899–911

    Article  Google Scholar 

  63. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384

    Article  Google Scholar 

  64. Sargado JM, Keilegavlen E, Berre I et al (2018) High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. J Mech Phys Solids 111:458–489

    Article  MathSciNet  Google Scholar 

  65. Goswami S, Anitescu C, Rabczuk T (2020) Adaptive fourth-order phase field analysis for brittle fracture. Comput Method Appl Mech Eng 361:112808

    Article  MathSciNet  Google Scholar 

  66. Zhang X, Vignes C, Sloan SW et al (2017) Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Comput Mech 59:737–752

    Article  MathSciNet  Google Scholar 

  67. Nguyen T, Yvonnet J, Bornert M et al (2016) On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. Int J Fract 197:213–226

    Article  Google Scholar 

  68. Li Y, Huang K, Yu H et al (2022) Experimentally validated phase-field fracture modeling of epoxy resins. Compos Struct 279:114806

    Article  Google Scholar 

  69. Cavuoto R, Lenarda P, Misseroni D et al (2022) Failure through crack propagation in components with holes and notches: An experimental assessment of the phase field model. Int J Solids Struct 257:111798

    Article  Google Scholar 

  70. Doitrand A, Molnár G, Estevez R et al (2023) Strength-based regularization length in phase field fracture. Theoret Appl Fract Mech 124:103728

    Article  Google Scholar 

  71. Lorentz E, Cuvilliez S, Kazymyrenko K (2011) Convergence of a gradient damage model toward a cohesive zone model. CR Mec 339:20–26

    Article  Google Scholar 

  72. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  Google Scholar 

  73. Lorentz E (2017) A nonlocal damage model for plain concrete consistent with cohesive fracture. Int J Fract 207(2):123–159

    Article  Google Scholar 

  74. Wang Q, Zhou W, Feng YT (2020) The phase-field model with an auto-calibrated degradation function based on general softening laws for cohesive fracture. Appl Math Model 86:185–206

    Article  MathSciNet  Google Scholar 

  75. Molnár G, Gravouil A (2017) 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem Anal Des 130:27–38

    Article  Google Scholar 

  76. Wu JY, Huang Y (2020) Comprehensive implementations of phase-field damage models in Abaqus. Theoret Appl Fract Mech 106:102440

    Article  Google Scholar 

  77. Gustafsson A, Isaksson H (2022) Phase field models of interface failure for bone application-evaluation of open-source implementations. Theoret Appl Fract Mech 121:103432

    Article  Google Scholar 

  78. Wu JY, Huang Y, Nguyen VP (2020) On the BFGS monolithic algorithm for the unified phase field damage theory. Comput Method Appl Mech Eng 360:112704

    Article  MathSciNet  Google Scholar 

  79. Rots JG. Computational modeling of concrete fracture (Ph.D. thesis). Delft University of Technology, Netherlands, 1988.

  80. Winkler B (2001) Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton (Ph.D. thesis). Universität Innsbruck, Austria.

  81. Unger JF, Eckardt S, Könke C (2007) Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Method Appl Mech Eng 196:4087–4100

    Article  Google Scholar 

  82. Ferté G, Massin P, Moës N (2016) 3D crack propagation with cohesive elements in the extended finite element method. Comput Method Appl Mech Eng 300:347–374

    Article  MathSciNet  Google Scholar 

  83. Winkler B, Hofstetter G, Niederwanger G (2001) Experimental verifcation of a constitutive model for concrete cracking. Proc Inst Mech Eng Part L: J Mater: Des Appl 215(2):75–86

    Google Scholar 

  84. Gálvez J, Elices M, Guinea G et al (1998) Mixed mode fracture of concrete under proportional and nonproportional loading. Int J Fract 94:267–284

    Article  Google Scholar 

  85. Wu JY, Nguyen VP, Zhou H et al (2020) A variationally consistent phase-field anisotropic damage model for fracture. Comput Method Appl Mech Eng 358:112629

    Article  MathSciNet  Google Scholar 

  86. Wu JY (2018) A geometrically regularized gradient-damage model with energetic equivalence. Comput Method Appl Mech Eng 328:612–637

    Article  MathSciNet  Google Scholar 

  87. Wu JY, Nguyen VP (2018) A length scale insensitive phase-field damage model for brittle fracture. J Mech Phys Solids 119:20–42

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work does not receive funding from any other funding agencies. The authors appreciate the editors and reviewers for their constructive comments, which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuanfeng Yu, Chi Hou or Xiaoya Zheng.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Hou, C., Zheng, X. et al. A length insensitive modified phase field model for quasi-brittle failure and brittle fracture. Comput Mech (2023). https://doi.org/10.1007/s00466-023-02426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02426-4

Keywords

Navigation