Skip to main content
Log in

Abstract

In this study, low-velocity impact analysis on glass fibre-reinforced polymer (GFRP) and hybrid laminates is performed through an explicit numerical analysis and relevant experiments. Hybridised composite laminates are fabricated by sandwiching the flexible Polycarbonate sheet between the glass fibre-reinforced polymer laminas. In order to analyse the improvement in the impact resistance of hybrid laminates, low-velocity impact tests are performed on both GFRP and hybrid laminates by dropping an impactor from various pre-defined heights and the absorbed energy in each case is estimated. Results from the numerical analysis are validated with experimental results. Based on the numerical and experimental analysis, variation of the absorbed energy as a function time is estimated. Furthermore, shapes of the damaged areas are also estimated using the experimental specimens. Analysis of results indicates that the hybrid laminates display better energy absorption characteristics before rupture, as compared to the GFRP laminates. For a given energy absorption weight, savings up to 30.77% are observed using polycarbonate-based hybrid composites as compared to the GFRP laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balaganesan, G., Khan, V.C.: Energy absorption of repaired composite laminates subjected to impact loading. Compos. B Eng. 98, 39–48 (2016)

    Article  Google Scholar 

  2. Budarapu, P.R., Sudhir, Y.B.S., Brahmanandam, J., Mahapatra, D.R.: Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front. Struct. Civ. Eng. 8(2), 151–159 (2014). https://doi.org/10.1007/s11709-014-0247-9

    Article  Google Scholar 

  3. Budarapu, P.R., Rammohan, B., Vijay, S.K., Satish, B.D., Raghunathan, R.: Aero-elastic analysis of stiffened composite wing structure. J. Vib. Eng. Technol. 8(3), 255–264 (2009)

    Google Scholar 

  4. Kurşun, A., Şenel, M., Enginsoy, H.M., Bayraktar, E.: Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: experimental study and modelling. Compos. B Eng. 86, 143–151 (2016)

    Article  Google Scholar 

  5. Dogan, A., Arikan, V.: Low-velocity impact response of e-glass reinforced thermoset and thermoplastic based sandwich composites. Compos. B Eng. 127, 63–69 (2017)

    Article  Google Scholar 

  6. Hung, P., Lau, K., Cheng, L., Leng, J., Hui, D.: Impact response of hybrid carbon/glass fibre reinforced polymer composites designed for engineering applications. Compos. B Eng. 133, 86–90 (2018)

    Article  Google Scholar 

  7. Sonnenfeld, C., Mendil-Jakani, H., Agogué, R., Nunez, P., Beauchêne, P.: Thermoplastic/thermoset multilayer composites: a way to improve the impact damage tolerance of thermosetting resin matrix composites. Compos. Struct. 171, 298–305 (2017)

    Article  Google Scholar 

  8. Budarapu, P.R., Sudhir Sastry, Y.B., Natarajan, R.: Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures. Front. Struct. Civ. Eng. 10(4), 394–408 (2016). https://doi.org/10.1007/s11709-016-0352-z

    Article  Google Scholar 

  9. Bouvet, C., Castanié, B., Bizeul, M., Barrau, J.-J.: Low velocity impact modelling in laminate composite panels with discrete interface elements. Int. J. Solids Struct. 46(14–15), 2809–2821 (2009)

    Article  Google Scholar 

  10. Hongkarnjanakul, N., Bouvet, C., Rivallant, S.: Validation of low velocity impact modelling on different stacking sequences of cfrp laminates and influence of fibre failure. Compos. Struct. 106, 549–559 (2013)

    Article  Google Scholar 

  11. Bandaru, A.K., Ahmad, S.: Modeling of progressive damage for composites under ballistic impact. Compos. B Eng. 93, 75–87 (2016)

    Article  Google Scholar 

  12. Sarasini, F., Tirillò, J., D’Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., Gaudenzi, P.: Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Compos. B Eng. 91, 144–153 (2016)

    Article  Google Scholar 

  13. Aktaş, M., Atas, C., Murat İçten, B., Karakuzu, R.: An experimental investigation of the impact response of composite laminates. Compos. Struct. 87(4), 307–313 (2009)

    Article  Google Scholar 

  14. Singh, N.K., Singh, K.K.: Review on impact analysis of frp composites validated by ls-dyna. Polym. Compos. 36(10), 1786–1798 (2015)

    Article  Google Scholar 

  15. Peng, Q., Sun, X., Guan, X., Yidong, M., Jia, Y.: Effect of interlaminar toughness on the low-velocity impact damage in composite laminates. Polym. Compos. 37(4), 1085–1092 (2016)

    Article  Google Scholar 

  16. Rawat, P., Singh, K.K., Singh, N.K.: Numerical investigation of damage area due to different shape of impactors at low velocity impact of gfrp laminate. Mater. Today Proc. 4(8), 8731–8738 (2017)

    Article  Google Scholar 

  17. Gu, G.X., Takaffoli, M., Hsieh, A.J., Buehler, M.J.: Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mech. Lett. 9, 317–323 (2016)

    Article  Google Scholar 

  18. Bouhfid, N., Raji, M., Boujmal, R., Essabir, H., Bensalah, M.-O., Bouhfid, R., Qaiss, A.K.: Numerical modeling of hybrid composite materials. In: Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 57–101. Elsevier (2019)

  19. Feraboli, P., Wade, B., Deleo, F., Rassaian, M., Higgins, M., Byar, A.: Ls-dyna mat54 modeling of the axial crushing of a composite tape sinusoidal specimen. Compos. A Appl. Sci. Manuf. 42(11), 1809–1825 (2011)

    Article  Google Scholar 

  20. Gama, B.A., Gillespie Jr., J.W.: Finite element modeling of impact, damage evolution and penetration of thick-section composites. Int. J. Impact Eng. 38(4), 181–197 (2011)

    Article  Google Scholar 

  21. Brown, K., Brooks, R., Warrior, N.: Numerical simulation of damage in thermoplastic composite materials. In: 5th European LSDYNA Users Conference (2005)

  22. Heimbs, S., Heller, S., Middendorf, P., Hähnel, F., Weiße, J.: Low velocity impact on cfrp plates with compressive preload: test and modelling. Int. J. Impact Eng. 36(10–11), 1182–1193 (2009)

    Article  Google Scholar 

  23. Berk, B., Karakuzu, R., Icten, B.M., Arikan, V., Arman, Y., Atas, C., Goren, A.: An experimental and numerical investigation on low velocity impact behavior of composite plates. J. Compos. Mater. 50(25), 3551–3559 (2016)

    Article  Google Scholar 

  24. Hosseinzadeh, R., Shokrieh, M.M., Lessard, L.: Damage behavior of fiber reinforced composite plates subjected to drop weight impacts. Compos. Sci. Technol. 66(1), 61–68 (2006)

    Article  Google Scholar 

  25. Kiani, M., Shiozaki, H., Motoyama, K.: Using experimental data to improve crash modeling for composite materials. In: Composite Materials and Joining Technologies for Composites, vol. 7, pp. 215–226. Springer (2013)

  26. Rawat, P., Singh, K.K.: An impact behavior analysis of cnt-based fiber reinforced composites validated by ls-dyna: a review. Polym. Compos. 38(1), 175–184 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sanita, Z.I.K.E., Kalnins, K., Ozolins, O., Knite, M.: An experimental and numerical study of low velocity impact of unsaturated polyester/glass fibre composite. Mater. Sci. 17(4), 384–390 (2011)

    Google Scholar 

  28. Chang, F.-K., Chang, K.-Y.: Post-failure analysis of bolted composite joints in tension or shear-out mode failure. J. Compos. Mater. 21(9), 809–833 (1987)

    Article  Google Scholar 

  29. Tsai, S.W., Edward, M.W.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)

    Article  Google Scholar 

  30. Maio, L., Monaco, E., Ricci, F., Lecce, L.: Simulation of low velocity impact on composite laminates with progressive failure analysis. Compos. Struct. 103, 75–85 (2013)

    Article  Google Scholar 

  31. Boria, S., Pavlovic, A., Fragassa, C., Santulli, C.: Modeling of falling weight impact behavior of hybrid basalt/flax vinylester composites. Procedia Eng. 167, 223–230 (2016)

    Article  Google Scholar 

  32. Thatte, B.S., Chandekar, G.S., Kelkar, A.D., Chaphalkar, P.: Studies on behavior of carbon and fiberglass epoxy composite laminates under low velocity impact loading using ls-dyna. In: 10th International LS-DYNA User’s Conference (2008)

  33. Sudhir, Y.B.S., Budarapu, P.R., Madhavi, N., Krishna, Y.: Buckling analysis of thin wall stiffened composite panels. Comput. Mater. Sci. 96B, 459–471 (2015). https://doi.org/10.1016/j.commatsci.2014.06.007

    Article  Google Scholar 

  34. El Moumen, A., Tarfaoui, M., Lafdi, K., Benyahia, H.: Dynamic properties of carbon nanotubes reinforced carbon fibers/epoxy textile composites under low velocity impact. Compos. B Eng. 125, 1–8 (2017)

    Article  Google Scholar 

  35. Imielińska, K., Guillaumat, L.: The effect of water immersion ageing on low-velocity impact behaviour of woven aramid-glass fibre/epoxy composites. Compos. Sci. Technol. 64(13–14), 2271–2278 (2004)

    Article  Google Scholar 

  36. Li, Z., Khennane, A., Hazell, P.J., Brown, A.D.: Impact behaviour of pultruded gfrp composites under low-velocity impact loading. Compos. Struct. 168, 360–371 (2017)

    Article  Google Scholar 

  37. Mahmoud, B., Torrecilla, M.C., Navarro, P., Marguet, S., Tawk, I., Ferrero, J.-F.: Semi-continuous strategy for the modelling of damage mechanisms in unidirectional composites under low velocity impacts. Compos. B Eng. 130, 147–157 (2017)

    Article  Google Scholar 

  38. Park, H.: Investigation on low velocity impact behavior between graphite/epoxy composite and steel plate. Compos. Struct. 171, 126–130 (2017)

    Article  Google Scholar 

  39. Salvetti, M., Sbarufatti, C., Andrea Gilioli, M., Dziendzikowski, K.D., Manes, A., Giglio, M.: On the mechanical response of cfrp composite with embedded optical fibre when subjected to low velocity impact and cai tests. Compos. Struct. 179, 21–34 (2017)

    Article  Google Scholar 

  40. He, R.W., Shu, C.L., Xiao, Q.Z., Xiao, H.Y.: Study on the delamination behavior of thick composite laminates under low-energy impact. Compos. Struct. 184, 461–473 (2018)

    Article  Google Scholar 

  41. Sudhir, Y.B.S., Budarapu, P.R., Krishna, Y., Devraj, S.: Studies on ballistic impact of the composite panels. Theor. Appl. Fract. Mech. 72, 2–12 (2014). https://doi.org/10.1016/j.tafmec.2014.07.010

    Article  Google Scholar 

  42. Sikdar, S., Banerjee, S.: Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided waves. Compos. Struct. 152, 568–578 (2016)

    Article  Google Scholar 

  43. Bandaru, A.K., Ahmad, S., Bhatnagar, N.: Ballistic performance of hybrid thermoplastic composite armors reinforced with kevlar and basalt fabrics. Compos. A Appl. Sci. Manuf. 97, 151–165 (2017)

    Article  Google Scholar 

  44. Keränen, M., Gnyba, M., Raerinne, P., Kololuoma, T., Maaninen, A., Rantala, J.T.: Synthesis and characterization of optical sol-gel adhesive for military protective polycarbonate resin. J. Sol Gel. Sci. Technol. 31(1–3), 369–372 (2004)

    Article  Google Scholar 

  45. Hsieh, A.J., DeSchepper, D., Moy, P., Dehmer, P.G., Song, J.W.: The effects of pmma on ballistic impact performance of hybrid hard/ductile all-plastic-and glass-plastic-based composites. Technical report, Army Research Lab Aberdeen Proving Ground MD (2004)

  46. Sarva, S., Mulliken, A.D., Boyce, M.C., Hsieh, A.J.: Mechanics of transparent polymeric material assemblies under projectile impact: simulations and experiments. In: Transformational Science and Technology for the Current and Future Force: (With CD-ROM), pp. 227–234. World Scientific (2006)

  47. Sudhir Sastry, Y.B., Kiros, B.G., Hailu, F., Budarapu, P.R.: Impact analysis of compressor rotor blades of an aircraft engine. Front. Struct. Civ. Eng. 13(3), 505–514 (2019)

    Article  Google Scholar 

  48. Her, S.-C., Liang, Y.-C.: The finite element analysis of composite laminates and shell structures subjected to low velocity impact. Compos. Struct. 66(1–4), 277–285 (2004)

    Article  Google Scholar 

  49. ASTM International: Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event. ASTM International (2007)

  50. Mullaoğlu, F., Usta, F., Türkmen, H.S., Kazancı, Z., Balkan, D., Akay, E.: Deformation behavior of the polycarbonate plates subjected to impact loading. Procedia Eng. 167, 143–150 (2016)

    Article  Google Scholar 

  51. Hallquist, J.O., et al.: Ls-dyna keyword user’s manual. Livermore Softw. Technol. Corp. 970, 299–800 (2007)

    Google Scholar 

Download references

Acknowledgements

Harshavardhan Shetty would like to thank the computational and experimental facilities provided by PES University to perform the reported numerical and experimental studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harshavardhan Shetty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Fabrication of GFRP and hybrid laminates

Appendix A: Fabrication of GFRP and hybrid laminates

Hybrid laminates of thickness 3 mm are manufactured by sandwiching serrated 2-mm PC sheets in between 0.5-mm GFRP laminates using an adhesive, epoxy resin ‘AV 138 IN’ and hardener ‘HV 998 IN’. The resin ensures the compatibility between the polycarbonate and GFRP. This is particularly required since polycarbonate and GFRP sheets have different adhesive properties. As a result of different characteristics, a resin along with an hardener is used to bond the GFRP and polycarbonate laminates. The selected resin and hardener combination ensures room temperature curing and strong bonding. Furthermore, in order to facilitate the adhesion between GFRP and polycarbonate layers, serrations at \(+ 45 ^\circ\) and \(-45^\circ\) were created on either side of the polycarbonate sheet; see Fig. 14a.

Fig. 14
figure 14

Fabrication and testing of GFRP and hybrid laminates. a Serrations created on either side of the polycarbonate sheet. b The GFRP and hybrid laminates prepared for lap joint test. The c front and d top schematic views highlighting the geometry details of the specimens in b

After application of the adhesives, the panel (GFRP/PC) is allowed to cure at room temperature for \(\approx 24 \,\hbox {hours}\). During the curing process, cross-linking between the uniformly distributed adhesive and the laminas can be established. Followed by curing, an adhesive bond shear strength test as per ASTM D1002 standard considering a single lap joint was performed before the impact testing. The GFRP and hybrid laminates prepared for lap joint test are shown in Fig. 14b, where the geometry details of the specimens are highlighted in the front and top schematic views in Fig. 14c, d, respectively. The bonding test is required to validate the strength of the bond such that bond failures during the impact test can be eliminated, thereby avoiding the wrong assessment of the impact test data. Experiments were carried on \(25\times 100 \times 0.5 \,\hbox {mm}^3\) GFRP and \(25\times 100 \times 2 \,\hbox {mm}^3\) polycarbonate specimens, with a bond area of \(25\times 12.5 \,\hbox {mm}^2\); see Fig. 14. The experiments are carried out at the National Analytical Laboratories and Research Center (NALRC), Bangalore, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, H., Sethuram, D., Rammohan, B. et al. Low-velocity impact studies on GFRP and hybrid composite structures. Int J Adv Eng Sci Appl Math 12, 125–141 (2020). https://doi.org/10.1007/s12572-021-00287-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-021-00287-9

Keywords

Navigation